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A B S T R A C T   

Background: Traditionally, EEG/MEG data are high-pass filtered and baseline-corrected to remove slow drifts. 
Minor deleterious effects of high-pass filtering in traditional time-series analysis have been well-documented, 
including temporal displacements. However, its effects on time-resolved multivariate pattern classification an
alyses (MVPA) are largely unknown. 
New method: To prevent potential displacement effects, we extend an alternative method of removing slow drift 
noise – robust detrending – with a procedure in which we mask out all cortical events from each trial. We refer to 
this method as trial-masked robust detrending. 
Results: In both real and simulated EEG data of a working memory experiment, we show that both high-pass 
filtering and standard robust detrending create artifacts that result in the displacement of multivariate pat
terns into activity silent periods, particularly apparent in temporal generalization analyses, and especially in 
combination with baseline correction. We show that trial-masked robust detrending is free from such 
displacements. 
Comparison with existing method(s): Temporal displacement may emerge even with modest filter cut-off settings 
such as 0.05 Hz, and even in regular robust detrending. However, trial-masked robust detrending results in 
artifact-free decoding without displacements. Baseline correction may unwittingly obfuscate spurious decoding 
effects and displace them to the rest of the trial. 
Conclusions: Decoding analyses benefit from trial-masked robust detrending, without the unwanted side effects 
introduced by filtering or regular robust detrending. However, for sufficiently clean data sets and sufficiently 
strong signals, no filtering or detrending at all may work adequately. Implications for other types of data are 
discussed, followed by a number of recommendations.   

1. Introduction 

Recent years have seen an upsurge in the application of time- 
resolved multivariate pattern classification analyses (MVPA) – also 
referred to as decoding – to electro- and magnetoencephalographic data 
(EEG/MEG; see Table 1 for an extensive list of references). MVPA allows 
researchers to uncover the active sensory and mnemonic representations 
underlying cognitive processes as wide-ranging as perception, attention, 
categorization, language, working memory, and long-term memory. 
Many researchers therefore now prefer the information-rich 

multivariate approach over traditional univariate event-related poten
tial (ERP) or event-related field (ERF) analyses based on signals aver
aged over epochs. Moreover, a number of toolboxes have recently 
emerged to facilitate these types of analyses (e.g. Bode et al., 2018; 
Fahrenfort et al., 2018; Hanke et al., 2009; Meyers, 2013; Oosterhof 
et al., 2016; Treder, 2020). 

However, as the field is making the transition from univariate to 
multivariate approaches, some of the standard data processing proced
ures remain, raising the question whether these procedures are actually 
optimal, or perhaps even harmful, for decoding. One of the most 
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common processing steps is high-pass filtering. Given the slow drifts in 
especially EEG data (less so in MEG data), high-pass filtering has become 
a crucial component in extracting ERPs and improving signal-to-noise. 
However, it is well known that high-pass filtering can lead to artifacts. 
Specifically, too high cut-off values (typically 0.1 Hz or more) may cause 
the signal enhancement to result in spurious local ringing effects2 

around the event-related responses – artifacts which may be mis
interpreted as real components in the event-related signal (Acunzo et al., 
2012; Kappenman and Luck, 2010; Luck, 2005; Tanner et al., 2015, 
2016; Widmann et al., 2015). Nevertheless, high-pass filtering is 
generally still considered a crucial step for extracting meaningful ERPs 
(for which drift correction is necessary), and therefore continues to be 
part of the recommendations with regards to EEG data preprocessing 
(with appropriate cut-off values, e.g. Maess et al., 2016; Tanner et al., 
2016; Widmann and Schroger, 2012; Widmann et al., 2015). 

Perhaps less well known is that, depending on the specific cut-off 
value and frequency of the ERP, high-pass filtering may also lead to 
quite diffuse, but still spurious, activity differences both well before and 
well after the event-related response (Tanner et al., 2016). Even with 
modest cut-off settings, these slower components may emerge as subtle 
overall baseline shifts. A not uncommon step for ERP researchers is to 
correct for these shifts (whether apparent or real), thus potentially 
obscuring any artifacts. Thus, although sufficiently powered ERP studies 
could still show such artifacts, subtle baseline differences are often 
thought to be remedied by ensuing baseline corrections in ERP analyses 
(though see Tanner et al., 2016). However, multivariate analyses may be 
more sensitive to spuriously transposed information present in the 
topographical landscape. So far, little is known about the effects of 
high-pass filtering on multivariate pattern classification, and to what 
extent it leads to artifacts in decoding. 

The potential for spurious temporal displacement of information is 
particularly worrisome when testing hypotheses on neural activity in the 
absence of stimulation, for example in the field of working memory. 
Indeed, after extensively analyzing one of our own EEG-based working 
memory experiments, we had to conclude that the above-chance 
decoding of the memoranda during the blank delay period was at least 
partly caused by the (modest) high-pass filter applied during pre
processing. As Table 1 shows, we have not been the only ones applying 
high-pass filtering prior to MVPA, as filtering has remained part of the 
pre-processing pipeline in a wide range of studies. Moreover, the same 
table also shows a wide range of cut-off values used when high-pass 
filtering is applied, from as low as 0.03 Hz to as high as 2 Hz, with 0.1 

Table 1 
A non-exhaustive list of EEG and MEG studies that have used MVPA decoding 
techniques after applying different levels of filtering. High-pass and low-pass 
cut-off values are provided. Note this table is only intended to illustrate the 
wide-ranging use of high-pass filters in EEG/MEG, and not to suggest that any
thing is necessarily wrong with these studies. For example, different studies may 
use different filter types: online (causal) or offline (either causal or acausal), 
Finite Impulse Response (FIR) or Infinite Impulse Response (IIR), different filter 
lengths and so forth, and each of these filter types may have different effects on 
the data that do not necessarily have to be problematic in the scientific context in 
which they are applied.  

Publication EEG MEG High pass cut- 
off (Hz) 

Low pass cut-off 
(Hz) 

(Alizadeh et al., 2017) • 0.1 40 
(Auksztulewicz et al., 

2019) 
• • 0.1 200 

(Bae and Luck, 2018) • 0.1 80 
(Bae and Luck, 2019) • 0.1 80 
(Barragan-Jason et al., 

2015) 
• 0.1 40 

(Blom et al., 2020) • – – 
(Boettcher et al., 2020) • 0.1 – 
(Borst et al., 2016)  • 0.5 50 
(Borst et al., 2013) • 0.5 30 
(Brandman et al., 2020)  • 0.1 330 
(Brandmeyer et al., 2013) • 1 25 
(Carlson et al., 2011)  • – – 
(Carlson et al., 2013)  • 0.1 200 
(Cauchoix et al., 2014)   0.1 40 
(Chan et al., 2011) • • 0.1 200 
(Cichy and Pantazis, 2017) • • 0.03 300 
(Cichy et al., 2014)  • 0.03 330 
(Cichy et al., 2015)  • 0.03 330 
(Clarke et al., 2015)  • 0.03 40 
(Correia et al., 2015) • 0.1 100 
(Dash et al., 2020)  • – 250 
(Dijkstra et al., 2018)  • – – 
(Fahrenfort et al., 2017a, 

2017b) 
• 0.1 – 

(Fahrenfort et al., 2017b) • 0.1 – 
(Giari et al., 2020)  • 0.8 80 
(Gwilliams and King, 2020)  • 0.5 40 
(Hebart et al., 2018)  • 0.1 300 
(Herrmann et al., 2012)  • 2 10 
(Hogendoorn and Burkitt, 

2018) 
• – – 

(Hogendoorn et al., 2015) • – – 
(Hubbard et al., 2019) • 0.01 80 
(Isik et al., 2014)  • 2 100 
(Jach et al., 2020) • 0.5 30 
(Jensen et al., 2019)  • 1 95 
(Kaiser et al., 2016a, 

2016b)  
• 1 330 

(Kaiser et al., 2016a, 
2016b)  

• 1 300 

(Kaiser et al., 2018) • 0.5 70 
(King et al., 2016)  • 0.1 30 
(Kok et al., 2017)  • – 40 
(LaRocque et al., 2013) • 1 55 
(Liang et al., 2019) • 1 45 
(Ling et al., 2019) • 0.1 40 
(Mai et al., 2019)  • 0.03 200 
(Mares et al., 2020) • 0.1 40 
(Marti and Dehaene, 2017)  • 0.1 30 
(Marti et al., 2015)  • 0.1 330 
(Mohsenzadeh et al., 2018)  • 0.03 330 
(Mostert et al., 2015)  • – 30 
(Munneke et al., 2020) • 0.01 80 
(Myers et al., 2015) • • 0.03 300 
(Nemrodov et al., 2016) • 0.1 40 
(Nemrodov et al., 2018) • 0.1 40 
(Noah et al., 2020) • – 40 
(Ort et al., 2019) • – – 
(Peters et al., 2016)  • 0.1 150 
(Quax et al., 2019)  • – – 
(Rose et al., 2016) • 1 60 

(continued on next page) 

Table 1 (continued ) 

Publication EEG MEG High pass cut- 
off (Hz) 

Low pass cut-off 
(Hz) 

(Simanova et al., 2010) • 1 30 
(Sudre et al., 2012)  • 0.1 50 
(Takacs et al., 2020) • 0.5 40 
(Tankelevitch et al., 2020)  • 0.1 40 
(Teichmann et al., 2019)  • 0.03 200 
(Treder, 2020) • • 0.1 100 
(Trubutschek et al., 2017)  • 0.1 330 
(Turner et al., 2017) • 0.1 70 
(Wardle et al., 2016)  • 0.1 200 
(Wolff et al., 2015) • 0.1 40 
(Wolff et al., 2017) • 0.1 40  

2 Ringing effects are rippling artifacts near sharp edges as a result of filtering 
out high-frequency information. 
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Hz being the most typical3 . We thus decided to conduct a systematic 
exploration of high-pass filtering-related artifacts in MVPA, the results 
of which are presented here. First, we show how high-pass filtering led 
to clear signs of spurious decoding in one of our own EEG experiments, 
which involved a working memory task illustrated in Fig. 1. The task 
contained an initial presentation of a cue, a blank delay period during 
which the cue had to be retained, and a test stimulus in which observers 
searched for the cued object. To uncover the cause of the artifacts, and 
because empirical data does not come with a ground truth, we subse
quently chose to create a simulated data set that allowed us to assess 
how decoding of filtered signals compares against decoding a known 
raw signal. 

In addition to testing the effects of high-pass filtering, we tested two 
alternative methods to remove slow drifts: robust detrending, and an 
extension of this method which we refer to as trial-masked robust 
detrending. In detrending, an nth order polynomial is fitted to the data 
and subsequently subtracted from the data, thereby removing slow- 
fluctuating drifts. Because such fits can be sensitive to artifactual de
viations (glitches) from the slow trend, Cheveigné and Arzounian (2018) 
recently introduced an improved method called robust detrending in 
which they employ an iterative weighting procedure to mask outliers 
from the data to which the polynomial is fitted. Although (robust) 
detrending is preferable over high-pass filtering, this method can still 
affect the data in at least two undesirable ways: (1) A slow polynomial 
may shift upwards or downwards by fitting to the peak of the ERP, 
thereby slightly moving activity from the peak of the ERP to the tem

poral window over which the shift occurred when the polynomial is 
subtracted and/or (2) a polynomial may fit to a long-duration low 
amplitude ERP such that (some of) the ERP itself is subtracted out when 
the polynomial is subtracted out. 

Therefore, we extend the robust detrending method in the current 
manuscript by not only masking out glitches that are determined in a 
data-driven way, but by actively masking out all parts of the data that 
might contain relevant cortical events (such as ERPs). We call this 
method trial-masked robust detrending, which should in principle pre
clude any kind of influence of experimentally relevant events on the 
detrending procedure. We show that both high-pass filtering and stan
dard robust detrending can result in multiple-comparison FDR (False 
Discovery Rate) corrected spurious decoding in time intervals where no 
above chance decoding should be present (such as the baseline window). 
These effects are particularly strong in temporal generalization matrices. 
In contrast, trial-masked robust detrending does not result in such 
spurious decoding effects, while still realizing modest improvements in 
decoding performance. Furthermore, we show that spurious effects in 
the baseline window may be transported to the rest of the trial through 
baseline-correction, thus unwittingly obfuscating spurious effects that 
were introduced by the pre-processing method. 

2. Methods 

For both the empirical and the simulated data set, stimuli, data, code 
and analyses scripts are available from the Open Science Framework, at 
https://osf.io/t9rkz/. 

2.1. Empirical data 

We report data from an experiment that is illustrated in Fig. 1. On 
every trial, observers were presented with a face, house, or letter (the 
cue), which they had to remember for a visual search task presented 3 s 
later. The task was to determine the presence or absence of the cued 
target. The experiment included other conditions, but to simplify mat
ters here we report on the condition that best serves the current purpose. 

2.1.1. Participants 
Twenty-five students from the Vrije Universiteit Amsterdam partic

ipated for course credits or monetary payment (€9 per hour). All subjects 
reported normal or corrected to normal vision. The protocol complied 
with ethical guidelines as approved by the Scientific and Ethical Review 
Committee of the Faculty of Behavioural and Movement Sciences, and 
with the Declaration of Helsinki. Data of two subjects were removed 
from further analyses, one due to excessive high frequency noise 
reflecting muscle artifacts, and another due to a very strong but poorly 
understood artifact in the ERPs that is most likely due to equipment 
failure. 

2.1.2. Stimuli and task 
Subjects were asked to memorize at each trial a briefly presented 

picture (250 ms), which could be of the category face, house or letter 
(width: ~4◦ visual angle; height: ~5◦). After a retention interval of 3 s 
(with only a white dot at the center of the screen as fixation point), a 
search display appeared, consisting of six pictures (two exemplars of 
each category; ~2.5◦ in size) randomly arranged along a hexagon array 
(radius of 4.5◦; three pictures per hemifield; white fixation dot remained 
at the center of the screen). Subjects were asked to indicate whether the 
target picture they memorized at the start of the trial was present (left 
index finger) or absent (right index finger) by pressing a button on a 
button box connected to the EEG acquisition computer via a parallel 
port. Probability of target present/absent was 50 %. The search array 
disappeared upon the subject’s response (which changed the color of the 
fixation dot to black for 500 ms), or when 5 s had passed (after which the 
warning “respond faster!” appeared at the center of the screen for 500 
ms). The inter-trial interval was set to 1 s ±500 ms jitter. Low-level 

Fig. 1. Example trial for the empirical experiment. Observers remembered a cued 
house, face or letter target for a subsequent visual search task presented after a 
3000 ms blank retention interval. Observers then indicated with one of two 
button presses whether the memorized target was present or absent in a visual 
search display which also contained a number of nontarget objects. 

3 Note that Table 1 is only intended to illustrate the wide-ranging use of 
filters in EEG/MEG, and not to suggest that anything is necessarily wrong with 
any particular study. For example, different studies may use different filter 
types: online (causal) or offline (either causal or acausal), Finite Impulse 
Response (FIR) or Infinite Impulse Response (IIR), different filter lengths and so 
forth, and each of these filter types may have different effects on the data that 
do not necessarily have to be problematic in the scientific context in which they 
are applied. Here we investigate only one particular common type of high-pass 
filter in one particular experimental context to assess its influence on MVPA of 
EEG. We return to this issue in the discussion. 
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image properties of face and house pictures were controlled with the 
SHINE toolbox (Willenbockel et al., 2010). Subjects performed a short 
practice block of 12 trials with feedback on accuracy (words “correct!” 
and “wrong…” presented centrally for 500 ms), after which EEG 
recording started for 252 trials (84 per picture category), without 
feedback (except for slow responses). Prior to participating, subjects 
signed an informed consent form. Each unique picture within a category 
was only presented once as target, while it could be used more than once 
as distractors within the search arrays. Furthermore, when the target 
was a face, the two face stimuli in the search display were of same 
gender, encouraging subjects to memorize facial features rather than 
category. We randomly selected face stimuli out of 100 face pictures 
(from Endl et al., 1998, 50 male, 50 female). Similarly, when the target 
was a letter, the two letter stimuli in the search display where of same 
identity and capitalization, encouraging subjects to memorize the spe
cific font. House stimuli were randomly sampled from 100 exemplars of 
pictures used in Egner et al. (2010). 

2.1.3. Data acquisition 
EEG data from 64 Biosemi ActiveTwo (biosemi.com) electrodes 

placed according to the 10− 5 system (a high-resolution electrode 
placement standard derived from the international 10–20 system) were 
acquired at 512 Hz sampling rate. The ActiveTwo system is DC-coupled, 
and thus has no online (hardware) high-pass filter. On such DC-coupled 
systems, drifts are common due to non-brain artifacts such as sweating. 
Further, the data was down-sampled offline to 128 Hz and re-referenced 
to the average of signals recorded from both earlobes. Error trials, trials 
without a response, or with responses slower than 3 s were not included 
in the analyses. Continuous, raw data was first inspected for malfunc
tioning electrodes, which were interpolated after the below pre
processing steps. We did not perform any oculomotor artifact correction. 

2.2. Simulated data 

We describe the creation of an artificial dataset for a task with a 
highly similar data structure. As a basis for the simulated data, we took 
the continuous EEG data structure from a representative subject and 
replaced the continuous EEG of that subject with simulated EEG, with 
ERPs injected at the same points in time where ERPs occurred in the 
original dataset. Each of the simulated ERPs involved the simulated 
presentation of a to-be-remembered stimulus, a retention phase, an ac
tivity silent period and a search phase containing the test stimulus 
(described in Sections 2.2.1 and 2.2.2 below). The continuous signal also 
contained simulated continuous pink noise (described in Section 2.2.3 
below). 

2.2.1. Creating class-specific topographical patterns 
Fig. 2A illustrates the creation of the underlying spatial pattern of 

evoked responses. The features fed into a linear discriminant classifier 
are typically activity values at a given time point (or averaged over a 
time window) for each of N electrodes that cover the scalp or part 
thereof. Here we simulated activity of 64 electrodes. From these we 
selected a fixed set of electrodes to represent one stimulus class, and 
another, partially overlapping set of electrodes to represent another 
stimulus class. Stimulus-related class-specific activity was thus associ
ated with different multivariate spatial patterns, such that multivariate 
classification trained and tested on the channel features over time would 
be able to reproduce the stimulus-related activity. 

To simulate stimulus-related activity assigned to these sets of elec
trodes, we first created an event-related potential (ERP, shown in 
Fig. 2B) that mimicked four phases of a working memory task: (1) 
encoding the stimulus into the visual system, (2) actively retaining a 
representation of the stimulus in working memory, (3) an activity silent 
period, and (4) a search phase in which subjects attempt to determine 
the presence of the target stimulus upon the presentation of a probe. A 
“trial” consisted of an array of data containing the entire ERP, and lasted 
from − 1.5 s to 6 s surrounding the “event” (what would be the onset of 
the to-be-encoded stimulus). The four phases of the ERP were modeled 
as follows: the encoding response started at t = 0.25 s using a Weibull 
function with a steep rising slope peaking at amplitude 1 a.u. and a 
shallower falling slope dropping to baseline at t = 1 s. The active 
retention phase (partially overlapping with the encoding phase) started 
at t = 0.5 s, modeled by a shallower logistic curve containing a plateau 
with an amplitude of 0.05 a.u. continuing for about 1 s, and dropping 
back to baseline around t = 2.5 s. The silent retention period with ac
tivity at baseline lasted from t = 2.5 s until 3.5 s. The search phase 
(memory display) started at t = 3.5 s, modeled by a similar Weibull 
function as for encoding but with a lower amplitude of 0.25 a.u., 
dropping back to baseline at t = 5 s, and staying at baseline for the 
remainder of the trial. Note that the silent period continued for an 
extended period of time (1 s) to determine whether decoding would 
occur in a time period where no information was present in the original 
data. 

2.2.2. Decision boundary 
We created one class of patterns by injecting (adding) the ERP into 

each of the electrodes in one of the two sets described above for 112 
trials, and another class by injecting the ERP to each of the electrodes in 
the other set for 112 trials, thus creating two different spatiotemporal 
landscapes of activity. The order of the trials was randomized before 
injection. With such two highly different patterns, a classifier would 

Fig. 2. Creation of simulated data. A) Two different electrode topographies representing the two stimulus classes, plus their difference. Red as positive, blue as 
negative. B) The underlying simulated ERP time series as injected into each electrode of the topographical patterns. C) Example time course of 1/f pink noise slow 
drift as was added to the data (left panel), and its spectral content (right panel). 
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produce perfect classification performance. To avoid such a ceiling ef
fect, we took three measures (1) we compromised the distance of the 
classes to the decision boundary by warping the classes toward each 
other and (2) we varied the amplitude of the ERP for different phases in 
the trial (see previous section) and (3) we injected pink noise into the 
data (see next section). To compromise the distance to the decision 
boundary, we first created a “decision boundary space” by warping one 
spatial pattern into the other pattern in 80 linearly spaced transitions. 
Warping resulted in non-overlapping channels now showing a relatively 
stronger ERP for one stimulus class than the other (where this was bi
nary prior to warping). Another way of describing the effect of this 
warping procedure is that the multivariate patterns of the two stimulus 
classes become more similar, thereby moving them closer to the decision 
boundary of a multivariate classifier. We used intermediately divergent 
patterns for the two classes (transition 32 vs transition 49, where the 
most divergent patterns would be transition 1 vs 80 and the least 
divergent patterns would be 40 vs 41). The same patterns were used 
throughout the trial (to allow for temporal generalization), while the 
separability of the patterns in any given phase of the trial was deter
mined by the signal to noise ratio in that phase (see next section). The 
warping parameter was not varied, so that the same distance to the 
decision boundary was used throughout the simulated experiment. Note 
that these simulated ERPs and spatial distributions were purely meant to 
illustrate decoding under separability, and not intended as an exact 
model of brain mechanisms of working memory. Nevertheless, the 
classification result yielded a pattern that can be observed in data from 
other labs (e.g. Myers et al., 2015; Wolff et al., 2015), as well as in our 
own data (see Fig. 4): A transient sweep of high decoding performance 
during encoding, lower sustained performance during retention, an ac
tivity silent period, and high (yet reduced) performance during 
recall/search. 

2.2.3. Adding low-frequency pink drifts as noise 
As high-pass filtering and robust detrending are used to remove low- 

frequency non-stationary drifts, the next step was to generate simulated 
data that contained such activity. To this end, we created a time series of 
pink noise (1/f, power spectral density is inversely related to frequency) 
for each electrode separately. Specifically, we first created Fourier co
efficients of random amplitudes (drawn from a uniform distribution 
between 0 and 1) with an exponential decay over frequency, and 
multiplied these by random phase angles (drawn from a uniform circular 
distribution). The real part of the inverse fast Fourier transform of this 
simulated power spectrum produced “continuous data” of low frequency 
noise. The exponential decay function of the power spectrum had the 
form exp(-(0:nSamples-1)/rolloff), where nSamples is the number of 
Fourier coefficients (i.e. equal to the number of samples / sine waves 
used to generate the simulated signal), and rolloff determined the 
steepness of the decline. In our simulation, nSamples was 539648 and 
rolloff was 100. This decrease resulted in an attenuation of power of 
-3.65 dB when going from 0.0001 Hz to 0.1 Hz, such that power values at 
0.1 Hz approximated zero (Fig. 2C shows an illustrative 100 s snippet of 
the noise drift time series of one channel, and the corresponding power 
spectrum that was used to generate it). 

To make the data structure of the simulated data comparable to data 
structure of the empirical data, we used the continuous data file of a 
representative subject and replaced its real data with simulated pink 
noise. The total length of this time series was therefore equal to the total 
length of the experiment of that subject (containing 539648 samples) 
utilizing the same sampling frequency (128 Hz), and thus resulting in a 
total of around 70 min of simulated data (539648 samples /128 Hz / 60 s 
= ~ 70 min). Next, we randomized the order of the events in the 
accompanying event structure, and added ERPs of the two classes where 
real trial events would have otherwise occurred in the empirical 
experiment, so that the inter-trial event structure in the simulated data 
was the same as in the empirical data. 

Because it is impossible to recreate the exact signal to noise ratio of 

the real experiment due to mixing of signal and noise therein, we fixed 
the signal to noise ratio in any given electrode of any given participant 
by scaling the maximum amplitude of the simulated noise by a factor of 
2.5 a.u. (compared to a maximum amplitude of 1 a.u. in the ERP). 
Further, because different phases of a trial had different ERP amplitudes 
associated with it (see previous section), the signal to noise ratio varied 
throughout the trial from -7.96 dB for the encoding phase, − 33.98 dB for 
the retention phase and − 20 dB for the search phase (under the 
assumption of a weight of 1 for that electrode). This variation makes it 
possible to inspect the effect of the different pre-processing procedures 
on decoding under different ratios of signal to noise. Finally, to able to 
run the same analysis scripts for the simulated and empirical data, we 
randomly generated 23 subjects using the above procedure, so as to be 
able to run the same standard group analysis using the ADAM toolbox on 
both datasets (Fahrenfort et al., 2018). 

2.3. Data preprocessing and analyses 

Before applying MVPA analyses, slow drifts were either not removed 
at all (’raw data’), or removed through either high-pass filtering, regular 
robust detrending, or trial-masked robust detrending, each of which is 
described in more detail below. Each of these pre-processing options was 
then also analyzed with and without baseline correction. 

2.3.1. Removing low-frequency drift noise with high-pass filtering 
To investigate the effect of drift removal using high-pass filtering, we 

high-pass filtered the continuous data (both the simulated and the re- 
referenced empirical time series) according to typical M/EEG pre
processing pipeline settings. We used a one-pass non-causal zero-phase 
Windowed sinc FIR filter by using EEGLAB’s pop_firws() function 
(Delorme and Makeig, 2004) with a Kaiser window type, a maximum 
passband deviation of 0.1 % and a stopband attenuation of − 60 dB 
(recommended by Widmann et al., 2015). Filter order was set to 
correspond to 3 cycles of the cut-off frequency (defined as half ampli
tude, i.e., − 6 dB), as recommended in Cohen (2014, p. 181). We show 
the decoding of "raw" unfiltered data, as well as the effect of high-pass 
filters on decoding for four cut-off values: 0.05 Hz, 0.1 Hz, 0.25 Hz 
and 0.5 Hz (when showing diagonal decoding) or three cut-off values: 
0.05 Hz, 0.1 Hz and 0.5 Hz (when showing temporal generalization, to 
maintain a manageable number of plots). 

2.3.2. Removing low-frequency drift noise using regular and trial-masked 
robust detrending 

As an alternative to high-pass filtering, we either applied robust 
detrending (de Cheveigne and Arzounian, 2018) which we refer to here 
as regular robust detrending, or an extension of robust detrending which 
we termed trial-masked robust detrending. Detrending involves fitting an 
nth order polynomial to the data and subtracting the fit, thereby 
detrending the data to remove slow-fluctuating drifts (de Cheveigne and 
Arzounian, 2018). Because the fit can be sensitive to sudden deviations 
from the slow trend (“glitches”; muscle, motion or electrode-specific 
artifacts; but also sharp, transient ERPs or synchronized oscillations 
such as posterior alpha band), two unwanted side effects of detrending 
can occur. First, the glitch can impose ringing artifacts, similar to what 
happens in filtering. Second, if a signal of interest is partially or fully 
captured by a high-order polynomial, one risks affecting real effects in 
an attempt to remove artifacts. In regular robust detrending, an iterative 
weighting procedure is used to identify glitches which are recognized as 
outliers of the polynomial trend, and which are masked out prior to 
applying the polynomial fit (see de Cheveigne and Arzounian, 2018, for 
details). However, although sharp transients are masked out, given the 
weak nature of ERPs it is not guaranteed that this procedure identifies 
and thus masks out cognitive events of interest. Thus, a regular robust 
detrending procedure might still negatively affect the quality the data 
either (1) by fitting the polynomial to weak but real ERPs, thus sub
tracting out weak but real effects or (2) because partially fitting the 
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polynomial to the peak of an actual ERPs might actually cause the 
polynomial to slightly deviate from the baseline activity around the ERP, 
and as such displace information from the peak of the ERP onto the 
surrounding window once the polynomial is subtracted from the time 
series, potentially causing displaced and reversed patterns at these time 
points. 

Therefore, we extended the robust detrending method by actively 
masking parts of the data that are deemed to reflect experimentally 
relevant (e.g. cognitive) events. The final fit is then done on the masked 
data, and subtracted from all data (masked and non-masked, for an 
illustration of the procedure see Fig. 3, for an illustration on real data, 
see Supplementary Fig. S1). Although such a mask might in some cases 
make the fit to the entire time series slightly worse, it logically prevents 
that any experimentally interesting effect can be captured by the poly
nomial fit and thus influence the time series in unwanted ways. We 
termed this method trial-masked robust detrending. For both the simu
lated and real dataset we used a pre-set mask to remove the ERPs 
occurring in current trial from the trend fitting operation, so including 
the encoding, retention and recall phases (i.e. we set a mask that runs 
from t = 0 to t = 6 s as to not include any meaningful perceptual, 
cognitive and/or motor-related dynamics into the polynomial fit); all 
other surrounding data were left unmasked. 

High-pass filters are usually applied to continuous data with suffi
cient buffer zones before and after the experimental recording, because a 
low-frequency cut-off results in long lasting edge artifacts that may enter 
the task-related data. However, robust detrending of a whole recording 
session of typically more than an hour can be suboptimal: the non- 

stationary slow trend may be too complex, requiring a certain high 
polynomial order that is difficult to select a priori. Although de 
Cheveigné and Arzounian provide no clear recommendation as to how 
long data epochs should be for optimal detrending, the examples given 
in their paper show segments in the range of a few hundreds of seconds. 
Because we did not know a priori what the length of the drifts were in 
our experimental data, we did some preliminary testing and determined 
that segmented into padded epochs of 56 s works quite well (i.e. trial- 
related epochs of 6 s with 25 s of trial data pre-/post-padded). To be 
able to include all trials, the continuous data were symmetrically mirror- 
padded with 25 s prior to segmentation. Note however, that the duration 
of a padded trial during detrending does not directly impinge on the 
frequency of the drift that can be removed (as is the case for filter 
lengths), as a polynomial can easily fit onto a small portion of an 
oscillation. 

Similar to varying the cut-off frequency for filtering, we varied the 
polynomial order for detrending using the orders: 1, 10, 20 and 30. For 
all polynomial orders higher than 1, the data were first detrended with a 
1st order polynomial (i.e. in fact removing a linear trend over the entire 
epoch) to improve the fit of the higher order polynomial (as recom
mended by de Cheveigne and Arzounian, 2018), also see Fig. 3 for an 
illustration of the procedure from top to bottom for a 30th order poly
nomial. Because of the robust, iterative fitting procedure in robust 
detrending, the first detrending step updates the mask with additional 
time-channel-specific outliers; this updated mask is then used as a 
pre-mask for the next detrending step. As can be observed in the simu
lated electrodes in Fig. 3, the fit is not necessarily perfect (middle panel) 
and the drift is not perfectly removed (bottom panel). Detrending is not 
guaranteed to produce perfect fits, as noise can occur in many frequency 
spectra that are not necessarily always captured by a polynomial of a 
given order. For this reason, it might be advantageous to try out different 
filter orders during drift removal. However, by the analytic logic of the 
mask procedure, the ERP (the signal) that occurs in the current trial 
cannot affect the fit. Therefore, any remaining effect on MVPA can be 
regarded as imperfect noise removal, which by the same logic is evenly 
distributed across trials and conditions. 

Robust detrending was done with the Noise Tools toolbox (http://a 
udition.ens.fr/adc/NoiseTools), using the nt_detrend() function. Note 
that we have added a detrending function to the ADAM toolbox (Fah
renfort et al., 2018) that applies trial-masked robust detrending, 
allowing one to easily perform a robust detrending and epoching oper
ation on EEG data in EEGLAB format while masking out ’cognitive’ 
events, by internally making use of the nt_detrend function. The ADAM 
function is called adam_detrend_and_epoch(), and takes as inputs 
continuous EEGLAB data, a specification of the epoch window, the 
window in which event take place that should be masked out, and some 
other parameters. Its output can then be used directly for MVPA first 
level analyses in the ADAM toolbox. The function also produces a plot of 
the detrending procedure on a trial in the middle of the dataset, using 
some illustrative channels with strong drifts, as well as a butterfly plot of 
the ERP data (the average across trials for each electrode) before and 
after detrending. An example of such a plot can be found in Supple
mentary Fig. S1. See the help of adam_detrend_and_epoch for further 
details on how to execute the function. 

2.3.3. MVPA Analyses 
We performed multivariate pattern analyses (MVPA) on both the real 

and the simulated data, with the use of version 1.11 of the ADAM 
toolbox (Fahrenfort et al., 2018) – a freely available script-based Matlab 
analysis package for both backward decoding and forward encoding 
modeling of M/EEG data. The latest release of the toolbox is available 
from Github, through http://www.fahrenfort.com/ADAM.htm. A linear 
discriminant classifier was trained and tested on each time point either 
using 10-fold cross-validation for both the real and the simulated data. 
As classification performance metric we used the Area Under the Curve 
(AUC), in which the curve refers to the Receiver Operating 

Fig. 3. Procedure for removing low-frequency drift noise with current trial-masked 
robust detrending. This figure shows the detrending procedure on simulated data 
of an illustrative trial of some illustrative electrodes in an illustrative subject. 
Top panel: raw data for three electrodes: CPz (no ERP), CP5 and FC6 (both of 
which contain an ERP). Also shown as dotted lines are the polynomial fits on 
the raw data from which the trial events were masked out (grey panel in the 
background). Middle panel: data after removing 1st order polynomials fits from 
the top panel. Also shown are the 30th order polynomial fits on these data, from 
which the trial events were masked out (grey panel in the background). Bottom: 
data after removing the 30th order polynomial fits. Finally, the middle trial is 
segmented out for further analysis. Note that the epoched trial is slightly wider 
than the mask that was used during detrending because it also includes a 1.5 s 
pre-stimulus period. Further, depending on the length of the intertrial interval 
one may choose to mask out only the data that are contained in the currently 
epoched trial (as was done in the analyses presented in this paper), or also mask 
out neighboring trials (which may also work well, but was not done here or in 
the analyses that were presented in this manuscript). Finally, the robust 
detrending algorithm will also iteratively mask out additional sharp transients 
from the data that otherwise disturb smooth fits, see main text as well as (de 
Cheveigne and Arzounian, 2018) for details. A similar figure is produced when 
using the detrending function included in the ADAM toolbox, an illustration of 
which can be found in Supplementary Fig. S1. 
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Characteristic (ROC, Hand and Till, 2001). 
For the real dataset, the three image categories of faces, houses and 

letters were used as classes to train the classifier. As features we used all 
64 electrodes for the initial analyses, but we also show an analysis in 
which we pre-selected 9 occipital channels (PO7, PO3, O1, Iz, Oz, POz, 
PO8, PO4, and O2). This was done to reduce overfitting to irrelevant 
electrodes, which has been shown to increase classification performance 
in other visual tasks as well (Fahrenfort et al., 2017a, 2017b). Classes 
comprised the three balanced picture categories, and a linear discrimi
nant classifier (LDA) was used to discriminate the three classes (Fah
renfort et al., 2018). After applying the various pre-processing options 
(high-pass filtering or detrending), but prior to MVPA, the EEG data 
were down-sampled to 32 Hz sampling rate using MATLAB’s down
sample function (which does not apply an anti-aliasing lowpass filter, to 
prevent negative temporal effects of lowpass filtering). Another stan
dard pre-processing step is to apply baseline-correction, involving the 
subtraction of the average activity in a baseline window from the entire 
trial. Just like high-pass filtering or detrending, this step generally 
removes unwanted effects of slow noise fluctuations. However, this step 
may also obfuscate any effects that might be introduced into the baseline 
window by filtering or detrending. We therefore chose to run MVPA 
analyses on the data both with and without baseline-correction to be 
able to compare the two. 

Further, we tested the classifier not only on the same time point at 
which it was trained, but also across all other time points, to inspect 
effects of the various pre-processing options on temporal generalization. 
Such across-time decoding generates temporal generalization matrices, 
which are informative as to whether a pattern of neural activity un
derlying classification performance is stable, or whether it dynamically 
changes over time (King and Dehaene, 2014), for example to see 
whether the activity in the encoding phase is similar (generalizes to) the 
activity in the retention period. In the context of the current analyses 
they are also informative with respect to the degree to which patterns 
are artificially distorted over time. At the group level, subject-specific 
AUC as a performance measure of multivariate classification was sta
tistically compared against chance for the raw data, as well as for the 
different cut-offs and polynomial order values using t-tests. For all an
alyses, we corrected for multiple comparisons using a False Discovery 
Rate (FDR) correction (q = 0.05) on standard t-tests (p < 0.05), using a 
test that is guaranteed to be accurate for any test dependency structure, 
as described in Benjamini and Yekutieli (2001). This test does not suffer 
from some of the problems that common cluster-based permutation tests 
have (Maris and Oostenveld, 2007), as these may have inaccurate onset- 
and offset boundaries (either in the temporal and/or spatial domain) due 
to stochastic variation in the noise (Sassenhagen and Draschkow, 2019). 
Note however, that prior to peer review we had initially analyzed the 
data using cluster-based permutation and that these analyses showed 
qualitatively similar results. 

For the simulated dataset, the two condition labels assigned to the 
trials as described in Section 2.2.1 served as classes. Other than the 
number of classes, the analyses were identical between real and simu
lated data. 

3. Results 

3.1. Empirical EEG data 

Fig. 4 shows classifier performance for the working memory task. We 
were able to reliably dissociate multivariate patterns of broadband EEG 
activity across the 64 included channels, during encoding, retention, and 
the search period for the face, house and letter stimuli. Classification 
increased transiently during the presentation of the initial target cue, 
after which it decreased yet remained at above chance levels for up to 
two seconds during the delay period, before it dropped to near-chance 
levels. Classifier performance then increased again during presentation 
of the search display, presumably upon attentionally selecting the target 

category. 
The panels from left to right reveal how decoding performance was 

affected by different high-pass filter cut-off values (left panel), standard 
robust detrending orders (middle panel) and trial-masked robust 
detrending orders (right panel). We also show the effects of these 
detrending operations both before baseline correction (Fig. 4A) and 
after baseline correction (4B). High-pass filtering and detrending 
contribute strongly to overall decoding performance during the encod
ing/retention phase when no baseline correction is applied (the graded 
effects of increasingly strong cut-offs/polynomial orders in shades of 
orange when compared to raw decoding in black in Fig. 4A), whereas the 
advantage from filtering or detrending after a baseline-correction is 
much smaller, at least for the encoding phase (Fig. 4B). This is not 
surprising, given that baseline-correction can be understood as a crude 
method to achieve the same thing as filtering or detrending: the removal 
of drifts offsets that occur in a trial. In the case of filtering this happens 
by attenuating power in the frequency bands in which drift occurs, in the 
case of detrending this happens by estimating and subtracting out the 
drift that was estimated by fitting a polynomial, and in baseline- 
subtraction this happens by subtracting the average (drift-induced) 
offset of the signal just prior to the presentation of the first target 
stimulus from the entire trial. Although applying baseline correction has 
a clear positive effect on decoding performance, it has the disadvantage 
that its artifact-correcting ability wanes further in the trial, when more 
time has progressed since the baseline window. This can be observed 
when comparing the encoding phase and the search phase in 4B, where 
filtering and detrending have a selective advantage for the strength or 
extent of above chance decoding performance in the search phase. Such 
a selective benefit can be particularly problematic in paradigms such as 
the attentional blink paradigms, when comparing conditions in which 
different amounts of time have elapsed since baseline correction (short 
vs long lag, e.g. see Fahrenfort et al., 2017b). 

Further, note that filtering has small but unmistakable spurious ef
fects on decoding performance, at least for higher cutoffs. For example, 
FDR corrected significant decoding appears before stimulus onset for a 
high-pass filter of 0.5 Hz (Fig. 4A). Although this cutoff seems to have 
beneficial effects during the working memory retention period after 
baseline correction (Fig. 4B), we have no way of ascertaining whether 
this improvement is real. A more likely interpretation is that the baseline 
correction procedure itself displaces the spurious decoding that was 
observed prior to stimulus onset in Fig. 4A to the remainder of the trial. 
Normally, the baseline is computed from a window which is assumed to 
contain no experimentally relevant information. Thus, by subtracting 
the average activity in that window from the entire time series (sepa
rately for every electrode and every trial), one offsets any noise fluctu
ations prior to stimulus presentation. However, when this window 
contains a (temporally displaced) pattern of activity that is not due to 
noise, the inverse of this pattern is transposed once more to the 
remainder of the trial when applying baseline subtraction, which can 
now drive decoding accuracy in the rest of the trial. This interpretation 
seems plausible, as spurious decoding after baseline correction now also 
emerges prior to the baseline window starting already around -1500 ms. 
Often, decoding performance is not plotted prior to the baseline window 
itself, potentially obfuscating such spurious effects. Thus, one may 
question which decoding effects are real, and which are caused by dis
placements due to a combination of both filtering and baseline- 
correction. 

A much better grasp of these displacements may be obtained by 
inspecting the temporal generalization matrices in Fig. 5 (without 
baseline correction) and 6 (with baseline correction). Fig. 5A shows 
temporal generalization for the raw data. Here, the multivariate pattern 
was significant for the encoding phase (indicated with the number 1 in 
Fig. 5A), but for the raw data did not reach significance after FDR 
correction for the search phase (number 2 in 5A), nor for generalization 
from encoding to search and vice versa (numbers 3 and 4 in 5A). High- 
pass filtering clearly improved this, as both phases (1 and 2) and their 
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generalizations (3 and 4) reach significance after FDR correction for all 
three cutoffs. Unfortunately however, these improvements come at a 
cost, as we now also observe spurious FDR-corrected generalization 
from the encoding and/or search phase to the pre-stimulus window and 
vice versa for all cutoffs (blue regions left and below the dotted lines), 
which should logically not be possible given that the pre-stimulus win
dow should not contain information. Thus, this below chance decoding 
performance indicates that information was displaced from other parts 
of the trial to the pre-stimulus period. It is also interesting to note that 
these displacements result in negative decoding performance, i.e. the 
classifier performed below chance for these temporal generalizations. 
Plausibly, this is due to the fact that the filtering operation caused dis
placements to be inverses of the patterns from which they originated (e. 
g. positive voltages became negative voltages and vice versa), thus 
explaining a negative decoding performance when generalizing from 
pre-stimulus to encoding/search and vice versa. 

Further, although Fig. 4B seemed to show that no spurious effects 
occurred for standard robust detrending, we now also observe FDR 
corrected spurious pre-stimulus effects during temporal generalization 
of the pre-stimulus window to the search phase in Fig. 5C, for all poly
nomial orders. As for high-pass filtering, these are likely caused by 
temporal displacements caused by the standard robust detrending 
operation in similar ways as filtering. The only preprocessing option that 
did not cause such FDR-corrected spurious decoding accuracies was 

achieved by trial-masked robust detrending (Fig. 5D). In contrast to 
high-pass filtering and standard robust detrending, the improvements as 
a result of trial-masked robust detrending occurred without similar in
creases during baseline periods. 

To investigate the effect of such spurious effects in a standard pre- 
processing pipeline, Fig. 6 shows temporal generalization after the 
same pre-processing steps, but this time after also applying a baseline 
correction on the basis of the window [− 200, 0] ms. Again, it is easy to 
see how baseline-correction improves decoding performance of raw data 
when inspecting Fig. 6A, both for the encoding and for the search phase 
(number 1 and 2), as well as for generalization from encoding to search 
and vice versa (number 3 and 4), all of which now reach statistical 
significance after FDR correction. Furthermore, the spurious decoding 
effects that we observed in Fig. 5B and C as a result of high-pass filtering 
and regular robust detrending are no longer visible in Fig. 6B and C. 
Crucially, the reason for the disappearance of these spurious effects is 
the fact that the baseline correction procedure itself has moved these 
spurious pre-stimulus patterns to the rest of the trial, so that they no 
longer show up as spurious effects in the pre-stimulus window. 

Thus baseline-correction does not actually resolve the spurious ef
fects that are observed in Fig. 5B and C, but by its subtraction logic it just 
moves these spurious effects to the remainder of the trial, making it 
impossible to disentangle which effects are real and which are spurious. 
This can be observed when inspecting temporal generalization at high- 

Fig. 4. Results for empirical data from a working memory guided search task with and without prior baseline correction. A) Decoding performance (AUC) without baseline 
correction at each time point for different high-pass filter cut-off frequencies (left panel), regular robust detrending (middle panel) and trial-masked robust 
detrending (right panel). Different pre-processing parameters (high-pass filter cutoff / polynomial order) are indicated by shades of orange, while raw data is shown 
in black. All thick colored lines denote reliable difference from chance (p < 0.05) after FDR correction (q = 0.05). B) The same, but now after a baseline-correction on 
a window of -200 to 0 milliseconds. Note reliable above-chance decoding at the onset of the trial in the high-pass filtered data, especially after a cut-off of 0.5 Hz. 
Although the artifacts may seem minor in the non-baselined data, baseline-correction itself may cause spurious effects to be transposed to the rest of the trial due to 
the subtraction logic of baseline correction (i.e. subtracting the average activity in an electrode during the baseline from the activity in the rest of the trial in fact sets 
the pattern of activity at baseline to zero and displaces the inverse of the original pattern that was present at baseline to the rest of the trial). Note that the baseline 
window in this example runs from − 200 to 0 milliseconds, thus the above chance decoding performance for the 0.5 Hz cut-off at the beginning of the trial is plausibly 
the result of such a displacement. Together, this may also lead one to question whether the observed above-chance decoding during the retention period for the cut- 
off of 0.5 Hz is real. Moreover, the effects of such artifactual displacements on temporal generalization may be even worse (see Figs. 5 and 6). 
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pass filter cutoffs of 0.1 Hz and 0.5 Hz. These spurious effects of 
generalization from baseline period to the encoding and search phase 
now clearly show up as positive decoding in the pre-stimulus window 
starting at -1500 ms up to -200 ms, both for the 0.1 Hz and for the 0.5 Hz 
cutoff. This is plausibly what also drives the strong decoding in the 
retention phase and after the search phase, which can most clearly be 
seen for the 0.5 Hz cutoff. Further note that baseline correction not just 
displaces patterns, but also inverts them. For example, a pattern that is 
described by the vector [-4, 2, 0, -3, 3] becomes [0, 0, 0, 0, 0] after 
baseline subtraction, but introduces the pattern [4, -2, 0, 3, -3] into the 
remainder of the trial by virtue of the subtraction logic that is applied. 
This explains why generalization from the baseline window to the 
encoding and search phase now turns up as positive decoding for filter 
cutoffs 0.1 Hz and 0.5 Hz, as the inverted patterns that occurred in the 

baseline period due to filtering and detrending are inverted once more 
and end up in the rest of the trial. 

Again, it can be easy to miss the spurious nature of such effects if the 
plotted baseline period is too narrow or if the effect in the pre-stimulus 
window is constant over time. In either case, baseline correction trans
ports these spurious effects to the rest of the trial without ever having 
actually observed them. But even when plotting the broader time course, 
spurious effects in the baseline period may be obfuscated by baseline 
correction. Indeed, when we inspect the baseline corrected plots after 
standard robust detrending in Fig. 6C, nothing seems wrong with them, 
even though we know from Fig. 5C that there must be spurious effects in 
the plot, we just have no way of knowing where they are. None of these 
problems occur for the trial-masked robust detrending plots in Figs. 5D 
and 6 D which are free from temporal displacements of events of interest 

Fig. 5. Temporal generalization results for the 
empirical data without prior baseline-correction. A) 
Temporal generalization plot for the raw data. 
Saturated colors are p < 0.05 (uncorrected), 
time points marked or surrounded by dark red 
(above chance) or dark blue (below chance) 
contour lines are FDR corrected at q = 0.05. The 
dotted horizontal and vertical line indicate t =
0. There should logically be no generalization 
from the pre-stimulus window to other points in 
the trial, so no significant activity left or down 
from the vertical and horizontal line. The four 
numbers in the plot indicates various phases in 
the trial, as explained using the in-figure legend. 
The pattern in the raw data suggests a relatively 
strong representation during encoding which 
survives FDR correction, but which does not 
significantly generalize to the search phase or 
vice versa (3 and 4) after FDR correction. B) 
Temporal generalization after high-pass 
filtering at three different cut-off levels. Note 
that the encoding phase now significantly gen
eralizes to the search phase and vice versa for 
all frequency cut-offs. Worryingly though, we 
now also observe spurious decoding during 
generalization of the encoding phase to the pre- 
stimulus window for all frequency cut-offs, even 
after FDR correction. Blue colors denote below 
chance decoding during generalization, plau
sibly due to displaced and reversed patterns 
caused by filtering, questioning effects observed 
at other points in the trial as well. C) The same 
temporal generalization analyses, but now after 
regular robust detrending at different orders. As 
for filtering, we observe FDR-corrected signifi
cant generalization of the baseline window to 
the search phase, plausibly caused by pattern 
reversals during the baseline window due to the 
detrending operation. D) Trial-masked robust 
detrending, showing no sign of spurious gener
alizations, while still obtaining better general
ization of the encoding to the search phase and 
vice versa when compared to raw data.   
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due to the logic of the preprocessing operation, which prevents experi
mental effects from influencing preprocessing. The fact that the plots in 
6C and 6D look similar bring nothing to bear on this fact, Fig. 6D is 
actually the only correct plot from which to draw any conclusions. 

One may even question whether there is any advantage to be had 
from preprocessing relatively clean EEG data at all, as the raw baseline- 
corrected data in Fig. 6A seems to show a similar decoding result as the 
trial-masked robust detrending data in Fig. 6D. However, for subtle ef
fects, it may be beneficial to apply such a preprocessing operation after 
all. For example, WM representations during retention may be hard to 
pick due to their low signal to noise ratio. Although there is some debate 
about where WM representations are maintained in the brain (Christo
phel et al., 2017), there is strong evidence that visual representations are 
stored in visual regions during retention (Albers et al., 2013; Harrison 

and Tong, 2009; Super et al., 2001).Thus to identify such signals (as was 
the original goal of the data that are presented in the current study), it 
might be beneficial to apply the decoding operation only to the elec
trodes on visual areas (occipital). Such a selection might minimize the 
ability of the classifier to overfit to noise information in electrodes that 
contain little relevant information. In Fig. 7, we show the effect of 
decoding on only the occipital electrodes (see methods), separately for 
raw data, 0.1 Hz high-pass filtered data, standard 30th order robust 
detrending, and 30th order trial-masked robust detrending. Again, we 
observe the deleterious impact of high-pass filtering, but we also see the 
advantage of robust detrending over decoding on raw data, especially in 
the search phase. Further, we observe a clear selective advantage of 
trial-masked detrending in the temporal generalization from encoding to 
the retention phase after trial-masked robust detrending, but not after 

Fig. 6. Temporal generalization results for the 
empirical data with prior baseline-correction. A) 
Temporal generalization plot for the raw data. 
Saturated colors are p < 0.05 (uncorrected), 
time points marked or surrounded by dark red 
contour lines are FDR corrected at q = 0.05. 
Except for an added baseline correction prior to 
decoding these plots are identical to Fig. 5. We 
now see much better generalization in the raw 
data from encoding to search and vice versa due 
to the added baseline-correction. B) Temporal 
generalization, but now after high-pass filtering 
at three different cut-off levels. Although the 
cutoff of 0.05 is seemingly clean, we know from 
Fig. 5 that there were temporal displacements 
which are now obfuscated by baseline- 
correction. This becomes very clear when 
considering the high-pass filter cut-offs of 0.1 
and 0.5 Hz, where we now find strong decoding 
in the part of the pre-stimulus window that was 
not part of the baseline-window (-1500 to 200 
ms), and also in other parts of the trial (reten
tion), plausibly caused by baseline-correction 
induced temporal offsets of information from 
the baseline window. C) Temporal generaliza
tion after robust detrending and baseline 
correction. These data seem clean, but from 
Fig. 5 we know that there were offsets in the 
baseline window even after FDR correction. 
These offsets are transported back into the rest 
of the trial due to to baseline correction result
ing in potentially unpredictable and unidentifi
able spurious improvements in temporal 
generalization. D) Temporal generalization after 
trial-masked robust detrending. There are no 
spurious decoding results and the results seem 
very similar to decoding of raw data with 
baseline-correction, barring some seeming 
minor improvements in the extent of the search 
phase for 20th and 30th order trial-masked 
robust detrending.   
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standard robust detrending. Possibly the low signals during retention are 
subtracted out by including these signals in the polynomial fit during 
standard robust detrending, but not during trial-masked robust 
detrending. Highly similar results were obtained for other polynomial 
orders and cut-off frequencies (see supplementary Fig. S2). 

Summarizing, we find that high-pass filtering can result in clear ar
tifacts in decoding, while contributing little to overall decoding per
formance. In contrast, trial-masked robust detrending shows no such 
artifacts, while it does modestly enhance temporal generalization across 
time when decoding on occipital channels. For subtle cognitive and/or 
perceptual phenomena, such a small yet significant increase may be very 
valuable. However, without a ground truth, one may always wonder 
whether observed improvements are real or spurious. We therefore 
turned to simulated data, as described next. 

3.2. Simulated data 

Fig. 8A illustrates the effect of filtering (left panel) and standard 
(middle) and trial-masked robust detrending (right panel) on a simu
lated single trial ERP, for different cut-offs (0.05, 0.1 and 0.5) and orders 
(1, 10, 30) respectively. This clearly shows attenuated drift for higher 
level removals, but not without a cost. Filtering with higher cut-off 
values comes with ringing artifacts surrounding the ERPs, some of 
which extend up to seconds prior to and after the events (cf. Tanner 
et al., 2015, 2016) and can potentially transpose multivariate patterns 
from one point in time to another point in time. Note that the effect of 
filtering that we highlight in Fig. 8A is mostly caused by an interaction 
between the filter and the ERP itself, as can be seen in Supplementary 
Fig. S3, where we show the effect of filtering on a noise-free trial (left 

panel). 
Although standard robust detrending does not contain such typical 

filtering artifacts (Fig. S3, middle and right panel), it may still result in 
unforeseen displacements of information, e.g. through an interaction 
whereby the polynomial fit to a drift is affected by the peak of an ERP. 
Note here, that transients caused by a regular ERP are typically not 
masked out by the robust detrending algorithm, especially not when 
they are embedded in noise that causes the standard deviation to be 
large (the standard setting detects transient changes of more than three 
standard deviations from the mean). As a result, standard robust 
detrending may still adversely affect the data pattern when the poly
nomial is subtracted from the time series, resulting in the transposal of 
information present in the ERP to the remainder of the trial. An illus
tration of this can be found in Fig. 8A, where activity in the activity- 
silent period drops below zero after 30th order standard robust 
detrending (middle panel) but not after trial-masked robust detrending 

Fig. 7. Temporal generalization in baseline- 
corrected occipital channels under different pre- 
processing options. The top left panel shows 
raw data, the top right panel shows 0.1 Hz high- 
pass filtered data, the bottom left panel shows 
30th order detrended data without pre-set trial 
mask, and the bottom right panel shows 30th 
order detrended data with pre-set trial mask. 
Saturated colors are p < 0.05 (uncorrected), 
areas surrounded by dark red contour lines are 
corrected through an FDR cutoff of q = 0.05. 
The 0.1 Hz high-pass filtered data shows clear 
spurious above chance FDR-corrected decoding 
performance in the baseline window during 
temporal generalization in the encoding and 
search phases due to a combination of high-pass 
filtering and baseline-correction. Note that 30th 
order detrending without mask might or might 
not contain spurious decoding accuracies 
resulting from similar displacements of infor
mation, and in addition might suffer from sub
tracting out weak information contained in the 
ERP, while 30th order trial-masked detrending 
is guaranteed to be clear from such influences, 
as shown in Figs. 5 and 6. Interestingly, 30th 
order trial-masked detrending shows better 
generalization of encoding to retention, plau
sibly due to the fact that weak signals during 
retention do not contribute to the fit in trial- 
masked detrending, so that they cannot be 
subtracted out.   
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Fig. 8. Results for simulated data. A) A single-trial ERP of an illustrative electrode from an illustrative subject for four different high-pass filter cut-offs (left panel) and 
polynomial orders of regular (middle panel) and trial-masked robust detrending (right panel). Note that no baseline correction was applied, and that the filtering was 
carried out on the continuous data, while the detrending was carried out on a wider 56.5 s segment, as explained in the methods. B) Decoding performance (AUC) 
over time for different high-pass filter cut-off frequencies (left panel), regular (middle panel) and trial-masked robust detrending (right panel). Thick colored lines 
denote reliable difference from chance (p < 0.05) after FDR correction (q = 0.05). Note the spurious above-chance decoding both prior to the encoding phase (t<0) 
and in the activity silent interval between encoding and search (between 2.5 and 3.5 s) when no information was present in the simulated data. Similarly, regular 
robust detrending shows spurious decoding in the activity silent interval between 2.5 and 3.5 s, while trial-masked robust detrending does not. D) Average class- 
separability maps for different time points in the trial (pre-stimulus, encoding phase, activity silent period) for data that was high-pass filtered at 0.05 Hz (left) 
and detrended using 10th order polynomials using regular (middle) and trial-masked robust detrending (right). Individual subject patterns were spatially z-scored 
prior to averaging, color denotes z-value. The encoding phase has a topographical class-separability map that reflects the injected pattern (cf. Fig. 2A). Reversed class- 
related topographical patterns (blue is red and vice versa) can be seen during activity silent time windows when no class-related information was present in the data 
(t<0 as well as between 2.5 and 3.5 s), both after high-pass filtering data and after regular robust detrending, but not after trial-masked robust detrending. 
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(right panel)4 . As explained before, applying a trial-masked robust 
detrending procedure prevents information from the ERP in the current 
trial to contribute to the detrending operation. The simulated data we 
present here are intended to establish to what extent potential effects of 
different pre-processing operations can be established when the ground 
truth is known. By using a somewhat caricatural simulated dataset for 
which the ground truth is known, it is easy to ascertain to what extent 
the ostensibly spurious FDR-corrected decoding effects we observe in 
the empirical data are an accidental feature of our empirical dataset, or 
indeed spurious effects caused by high-pass filtering and/or regular 
robust detrending. 

Fig. 8B shows how various high-pass filtering cutoffs (left panel) and 
polynomial orders for standard robust detrending (middle panel) and 
trial-masked robust detrending (right panel) affect decoding perfor
mance for non-baselined simulated data. Especially filtering has a 
striking effect on decoding performance, with strong spurious decoding 
throughout the trial in activity silent windows (t<0 as well as 2.5 < t <
3.5 s) for all filter cutoffs. Naturally these effects are much stronger than 
what would be expected in empirical EEG data (cf Fig. 4A), but the goal 
here is merely to show that such spurious decoding effects can poten
tially result from high-pass filtering. A slightly cleaner picture emerges 
during standard robust detrending, with decoding performance mostly 
following the shape of the simulated ERP. However, here too we observe 
spurious decoding performance in the activity silent window between 
2.5 and 3.5 s, drawing into question whether decoding ’improvements’ 
in other parts of the trial are real or not. These spurious effects can be 
observed for all filter orders except the 1st order polynomial (which is a 
straight line). The only method that shows no spurious effects is trial- 
masked robust detrending, underpinning the artifact free nature of 
this method. 

When plotting the class-separability maps (topographical maps of 
the forward-transformed classifier weights, equivalent to the topo
graphic univariate difference between the conditions, Haufe et al., 
2014) for filtering/detrending (0.05 Hz and 10th order polynomial, 
Fig. 8C), we see that the encoding phase has a topographical 
class-separability map that looks identical to the injected pattern (cf. 
Fig. 2A), confirming that both the simulation and decoding operation 
work as expected. Further, we observe that even for these relatively 
modest settings, this class-separability map was temporally displaced 
onto the pre-stimulus window and activity silent period (left panel and 
middle panel), while this did not occur after trial-masked robust 
detrending (right panel). Importantly, the displaced patterns are inver
ted (red regions in the encoding phase become blue regions in the 
pre-stimulus and silent period, while blue regions become red), in line 
with the inversions that we observed due to filtering and standard robust 
detrending in the real data. The strength of these displaced patterns is 
even stronger for other other filter cutoffs (see Supplementary Fig. S4). 

To investigate the extent to which these effects are comparable to 
what we observed in the real data, we also plotted the temporal 
generalization matrices of the simulated data (Fig. 9). These show a very 
similar (albeit caricatured) pattern to what we observed in the temporal 
generalization plots of the non-baselined empirical data (Fig. 5). Most 
notably, we observe FDR corrected negative decoding in the 

generalization windows from baseline to the encoding phase and ac
tivity silent periods for both the high-pass filtered and regular robust 
detrended data, showing up as blue ’bands’ in a hash pattern (#), a 
spurious pattern that we also observed when applying the same pro
cedure to the empirical also the real data. Notably, we also show that 
such spurious effects are not observed when applying trial-masked 
detrending. 

In sum, these simulations show that topographical information on 
which the classifier relies can inadvertently be transposed onto pre- 
stimulus and activity silent time windows when applying high-pass fil
ters or regular robust detrending prior to decoding, thus resulting in 
artificially inflated and extended above or below chance decoding 
epochs. Trial-masked robust detrending does not suffer from such dis
placements, as the ERPs are fully masked out. Instead, it comes with few 
artifacts and improves decoding for components where there is a real 
underlying signal. 

4. Discussion 

For a long time, high-pass filtering has been a standard step in pro
cessing EEG and MEG data, as it has clear benefits when analyzing event- 
related potentials. Filtering already comes with potential pitfalls for ERP 
analysis, especially if one is interested in timing/latencies (also see de 
Cheveigne and Nelken, 2019). Here, we show here that one should also 
be careful, if not distrustful, when applying any high-pass filtering in 
service of multivariate pattern classification, because it can easily lead 
to spurious above-chance decoding effects. We demonstrate these arti
facts to clearly emerge for both empirical EEG and simulated data, and 
from cut-off values as low as 0.05 Hz. From Table 1 it emerges that 
roughly two-thirds (47/68) of studies have employed a cut-off value 
higher than that, with 0.1 Hz remaining the most popular value (29 out 
of the 57 that applied a high-pass filter). 

It is important to point out that the enhancement and temporal 
generalization of decoding performance was particularly salient for time 
windows where the real underlying signals were actually weak, in 
particular the “retention phase activity” of our (simulated) working 
memory task. In working memory experiments, this is an interval during 
which the memorandum is no longer present, and the classifier is sup
posed to pick up on purely mnemonic representations. Any enhance
ment or temporal generalization of such EEG- or MEG-based “mind- 
reading” capabilities would be very attractive to researchers, and thus 
extra caution is necessary. We show that above-chance decoding can 
easily extend to time points where there was actually no signal, not only 
during the delay period between phases where the simulated signals 
contained no information, but also during pre-stimulus and in activity 
silent intervals. Combine this with the fact that the reverse may also 
happen (i.e. high-pass filtering may actually destroy a real sustained 
signal, de Cheveigne and Arzounian, 2018), and the risk of drawing false 
conclusions on the presence or absence of sustained mental represen
tations becomes more than real. 

Robust detrending has been advocated as an alternative to high-pass 
filtering, but we show here that very similar effects can be observed even 
when applying standard robust detrending, both in terms of temporal 
displacements and in terms of subtracting out weak but real information. 
The cause of the spurious decoding appears to lie in small yet reliable 
artifacts caused by the interaction between the filter and the ERPs 
(Acunzo et al., 2012; Kappenman and Luck, 2010; Tanner et al., 2015; 
Widmann et al., 2015). We propose similar interactions can take place 
between a polynomial fit and ERPs, even when the fits use an algorithm 
that is robust to sudden transients and glitches. It has previously been 
reasoned that standard robust detrending might not suffer from the 
displacements that are observed in high-pass filtering because either (1) 
the robust detrending procedure masks out strong transients (from ERPs 
or otherwise) that might otherwise affect the detrending procedure or 
(2) ERPs are too weak to affect the polynomial fit, and thus do not affect 
the detrending procedure. Here we show that this reasoning does not 

4 Note that we cannot be completely sure of the origin of differences between 
Fig. 8A (middle panel) and Fig. 8A (right panel), as they might either be caused 
by stronger sensitivity to noise outside the trial-mask (in the case of trial- 
masked robust detrending) or by stronger sensitivity to the ERPs themselves 
(in the case of regular robust detrending), or both. The stronger variability 
between different orders observed in the case of trial-masked robust detrending 
(right panel) as compared to standard robust detrending (middle panel) is 
plausibly caused by a differential sensitivity to noise across outside the trial- 
mask across orders for trial-masked vs standard robust detrending, but when 
comparing a differential effect of trial-masked vs standard robust detrending for 
any given order, this assessment is harder to make. 
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hold up to scrutiny. Even when ERPs contain strong transients as in our 
simulated data, there may still be temporal windows with low amplitude 
that are strong enough to affect the polynomial fit despite not being 
identified as transients, thus either partially displacing ERPs, partially 
subtracting ERPs out, or both. Although the robust detrending algorithm 
does allow one to set a threshold parameter that determines what counts 
as a transient (the default is a deviation of more than three standard 
deviations from the mean), without setting a pre-trial mask there is no 
guarantee that the robust detrending procedure precludes potential in
fluences of experimental events on the detrending procedure. 

Depending on the nature of the ERPs and filter/detrending settings, 
artifacts may have quite diffuse effects, extending for seconds prior to 
and after the relevant events. Although these issues have been pointed 
out before in the context of ERP analyses, the problem becomes even 
more salient when performing decoding analyses, as classifiers may be 
sensitive enough to pick up on subtle, distributed patterns of displaced 
information that might only be noticed in averaged univariate ERPs 
when a study has sufficiently high power and one knows where to look. 
The effects of filtering/detrending on ERPs and on subsequent decoding 
becomes especially apparent when considering what may be seen as 
“baseline shifts”, which are then often corrected for in standard ERP 
analyses. While these might look to be quite subtle, such shifts can 
actually lead to strong above-chance decoding prior to stimulus onset or 
when inspecting generalizations from baseline to other time periods in 
the trial. 

It is equally important to point out that baseline correction does not 
help here, but rather makes things worse, since the baseline applies to 
the average of an idiosyncratically chosen pre-stimulus period and thus 
may a) obfuscate displacements introduced by the filtering or detrend
ing operation and b) reintroduce them as artificial effects to the rest of 
the trial, and even to the period prior to the baseline. This can most 
clearly be seen when comparing Figs. 5 and 6B/C, which show how pre- 
stimulus artifacts are either obfuscated by baseline correction and/or 
result in spurious pre-baseline and post-stimulus decoding. This is a 
clear warning that relatively subtle artificial effects in ERP studies can 
actually have very large undesirable effects on decoding. 

The reason for these artifacts lies in the nature of filtering and 
detrending operations. When filtering the data, one assumes that the 
noise (drifts) that one attempts to remove through the filtering operation 
occur in a different part of the frequency spectrum than the signals of 
interest. However, in practice this is often an unwarranted assumption, 
especially when trials have a long duration (as for example in working 
memory experiments that have a retention interval, in attentional blink 
or other Rapid Serial Visual Presentation paradigms). In such cases, the 
frequency spectrum in which the signal resides may overlap with the 
frequency range in which the filter operates. As a result, the filter may 
end up distorting the signal of interest and displacing information to 
periods where nothing occurred in reality. In the data presented here 
(trial duration 6 s), even a relatively conservative filter of 0.05 Hz 
(filtering out information with a period of more than 20 s) nevertheless 

Fig. 9. Temporal generalization for the simulated data, without baseline correction. Uncorrected significant p-values are saturated, FDR corrected p-values (q = 0.05) are 
encircled by dark red contour lines. The raw data (top panel) shows clear decoding of the stimulus encoding phase (number 1), which generalizes to the search phase 
and vice versa (numbers 3 and 4) although these do not reach statistical significance after FDR correction. The pre-processed data (bottom panel) show temporal 
generalization after a modest high-pass filter of 0.5 Hz (left panel), standard robust detrending (middle panel) or trial-masked robust detrending (right panel) with a 
modest 10th order polynomial. Despite the modest filter and polynomial, we see strong spurious decoding for both high-pass filtering and standard robust detrending 
but not for trial-masked robust detrending, for which all four phases are now significant after FDR correction, echoing our observations of the empirical EEG data 
(Figs. 5 and 6). Strikingly, there is strong spurious negative decoding for generalization from activity silent periods (the pre-stimulus window and the window 
between 2.5 to 3.5 s) to the encoding/search phase and vice versa, showing up as a hash-pattern of ’blue bands’ of negative decoding on the horizontal and vertical, 
reflecting the presence of reversed multivariate patterns during the activity silent periods, which we indeed observed in the topographic maps of Fig. 8C and in 
supplementary figure S4. The spurious blue hash-pattern can also be found in the temporal generalization matrices of the empirical high-pass filtered and standard 
robust detrended EEG data in Fig. 5, although in the empirical EEG data these blue bands are much weaker and do not reach FDR-corrected statistical significance. 
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produced such confounds. Similarly, in a detrending operation, a slow 
drift polynomial fit may latch on to ERP events and end up ever so 
slightly distorting the shape of the polynomial, in fact shifting infor
mation in time when this polynomial is subtracted from the data. 

A better way to remove slow trends from the data is trial-masked 
robust detrending, in which robust detrending (de Cheveigne and 
Arzounian, 2018) is combined with carefully defined masks that remove 
potentially relevant (cortical) sources of information from the fits. This 
method is advantageous when low frequency noise contributions that 
occur in the same frequency spectrum as the signal of interest can still be 
separated temporally. In such cases the signal of interest cannot affect 
the denoising operation because it is masked out. 

We found that trial-masked robust detrending can lead to reliable 
improvements in decoding, while avoiding the artifacts that come with 
high-pass filtering or standard robust detrending. Nevertheless, here too 
there are choices to make, and pitfalls to avoid. One important drawback 
is the search space for optimally detrending the results, where poly
nomial order and data segment length may interact in ways that in turn 
depend on the spectral content of the noise one wants to remove. We 
found that a polynomial order of 30 in combination with 25 s padding on 
each side worked quite well, but in empirical data, this may be unpre
dictable and study- and subject-specific, further complicating choices as 
to which detrending options to employ. Moreover, the method we pro
pose here masks out important epochs to prevent fitting to relevant 
events, but relies on additional assumptions as to which time windows 
are important. For our particular empirical data set, the improvement 
achieved with trial-masked robust detrending, relative to the raw data, 
was interesting but modest (Fig. 7). This may not outweigh the extra 
decisions and assumptions. Of course, this depends on the quality of the 
data and the conclusions one is after. 

Our findings may have wider implications beyond those for EEG 
decoding analyses. First and foremost, although here we focused on both 
simulated and empirical EEG data, our demonstrations may naturally 
apply to MEG data too, given its similar time series structure. Although 
slow-drift is usually much less of a problem in MEG, similar high-pass 
filtering procedures have been applied (see Table 1). Second, the 
spurious displacements of information patterns will not only affect 
MVPA-based decoding of EEG or MEG data, but also analyses using 
inverted or forward encoding models that rely on the same type of in
formation (e.g. Herbst et al., 2018). Finally, there may be important 
implications for fMRI analyses too. Here is where MVPA took off, with 
numerous studies demonstrating sustained mental representations 
beyond the initial stimulus presentation. High-pass filtering is a stan
dard step also in preprocessing fMRI data, and although event-related 
BOLD responses evolve at a much slower scale than typical EEG or 
MEG responses, the typical high-pass filter cutoffs used are scaled 
accordingly. Notably, where in EEG or MEG typically combine trials 
with event structures in the order of about 2 s with high-pass cut-off 
values in the order of 0.1 Hz, in fMRI event structures are typically in the 
order of 20 s, while cut-offs used are in the order of 0.01 Hz. Interest
ingly, after pointing out disadvantages of high-pass filtering in fMRI 
time series (unrelated to decoding), Kay et al. (2008) similarly proposed 
detrending through polynomial regressors as a solution. 

We also note that the decision on whether and how to apply high- 
pass filtering adds to a list of other design and data processing factors 
that may all affect decoding results, including transformation into 
source space, dimensionality reduction, subsampling, aggregating sig
nals across time, artifact rejection, trial averaging, specific classifier 
selection, and the specific cross-validation design used (Grootswagers 
et al., 2017). Most notably within the current context, Grootswagers 
et al. argued for caution when applying low-pass filtering (see also 
Vanrullen, 2011). With too low cut-off values, low-pass filtering too can 
cause significant decoding to emerge when in fact no signal exists in the 
original data. Here, we consciously down-sampled our data without 
applying a low-pass anti-aliasing filter to prevent such issues. 

Further, although the general principle we show here is likely to hold 

for different filter types, we have only explored the impact of a FIR filter 
with a Kaiser window here. Other options, such as the common 4th order 
Butterworth filter (Tanner et al., 2015), may produce slightly different 
results. In choosing only one particular filter, we have also not consid
ered fundamental differences between filter types. Causal filters for 
example (such as online filters) only take samples from the past and the 
present into consideration. Naturally, these can never lead to displace
ment of information backward in time as observed here, although they 
can still lead to displacement forward in time. Acausal filters on the 
other hand (such as the offline filter we used here), incorporate infor
mation from the future and the past. These types of filters are particu
larly popular when filtering EEG, because they are able in principle to 
filter the data without changing the underlying phase of the signal (fil
ters that combine forward and backward filtering are also called 
zero-phase filters). However, as we have seen here, the promise not to 
affect the phase of the signal can come at a significant cost, which is that 
the causal chain of events that the EEG signal attempts to capture can be 
compromised. How problematic various filter types are in the context of 
MVPA remains a question for future research. 

In conclusion, filtering or detrending of neural time series data may 
be problematic in more than one respect, but here we show that it be
comes particularly troublesome in the advent of modern decoding 
methods, as it can create widespread displacement of information onto 
time points where no information was present. This does not have to be 
problematic in cases where one is not interested in precise timing in
formation and simply wants to assess experimental differences between 
trials regardless of their timing and/or if one is interested in run-of-the- 
mill robust average ERP effects. However, this is highly problematic in 
cases where one wants to investigate more subtle multivariate effects 
and how they generalize over time. We also show that while trial- 
masked robust detrending provides a potential solution, no detrending 
at all may often be good enough. Some labs for which timing informa
tion is crucial do not apply filters because of this reason (e.g. Blom et al., 
2020). Based on our current findings we therefore recommend extreme 
caution with regards to high-pass filtering EEG and MEG time series data 
for MVPA purposes, in particular when timing/onsets/offsets of effects 
are important, when using slow paradigms such as found in working 
memory tasks, and when looking at temporal generalization (where 
spurious results were very pronounced in our empirical dataset). More 
specifically, we recommend the following steps:  

1 Assess the general data quality (unspecific to condition differences). 
If the quality is good, consider not doing any form of drift removal at 
all – whether through high-pass filtering or other methods (Luck, 
2005). As our own results show, when the data is good baseline 
correction is often sufficient, so that decoding is likely to work just 
fine without removing slow trends.  

2 This might not be sufficient when the relevant signal extends over 
longer periods of time. In working memory tasks for example, the 
retention interval is relatively long, and therefore easily affected by 
slow drifts. Further, baseline correction is inappropriate when con
ditions are compared from different time periods since baseline (such 
as long and short lag trials in the attentional blink), because the 
amount of time that has elapsed since baseline strongly affects 
decoding accuracy. In such cases, one might consider trial-masked 
robust detrending, in which robust detrending (de Cheveigne and 
Arzounian, 2018) is combined with a pre-set mask so that the ERP 
and other potentially cognitive events do not contribute to the 
polynomial fit. Trial-masked detrending precludes the risk that the 
detrending operation is affected by relevant signals. This also de
creases the risk of throwing out real effects. Using this method, we 
found a modest improvement in decoding accuracy compared to 
decoding the raw data, in particular when looking at temporal 
generalization. Still, this method requires one to be aware of several 
parameters that may affect the results. 
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3 If there are good reasons to dismiss steps 1 and 2 despite an interest 
in timing, and one still prefers standard high-pass filtering, then we 
recommend to systematically explore the cut-off parameter space to 
assess when spurious enhancement of decoding starts to emerge, and 
pick a cut-off value well below that (see also Tanner et al., 2015, 
2016). An appropriate double check would be to inspect the tem
poral generalization matrix of the decoding results, without prior 
baseline-correction. If strong generalizations occur to or from the 
baseline window, the filter cutoff should be reconsidered. Given that 
we found artifacts emerging with cutoff values as low as 0.05 Hz, our 
choice would be in the range of 0.01 and lower, but this may be 
different for different event structures and spacing, as there may also 
be interactions with the inter-trial interval (a topic that we chose not 
to explore in the current study). But even under conservative filter 
settings, one should be cautious not to overinterpret the precise 
timing of decoding onsets and offsets when using any kind of filter. 
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