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Abstract
Several influential theories of consciousness attempt to explain how, when and where conscious perception
arises in the brain. The extent of conscious perception of a stimulus is often probed by asking subjects to
provide confidence estimations in their choices in challenging perceptual decision-making tasks. Here, we
aimed to dissociate neural patterns of “cognitive” and “sensory” information maintenance by linking category
selective visual processes to decision confidence using multivariate decoding techniques on human EEG
data. Participants discriminated at-threshold masked face versus house stimuli and reported confidence in
their discrimination performance. Three distinct types of category-selective neural activity patterns were
observed, dissociable by their timing, scalp topography, relationship with decision confidence, and gener-
alization profile. An early (�150 –200 ms) decoding profile was unrelated to confidence and quickly followed
by two distinct decodable patterns of late neural activity (350 –500 ms). One pattern was on-diagonal, global
and highly related to decision confidence, likely indicating cognitive maintenance of consciously reportable
stimulus representations. The other pattern however was off-diagonal, restricted to posterior electrode sites
(local), and independent of decision confidence, and therefore may reflect sensory maintenance of category-
specific information, possibly operating via recurrent processes within visual cortices. These results highlight
that two functionally independent neural processes are operating in parallel, only one of which is related to
decision confidence and conscious access.
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Significance Statement

The aim of the present study was to dissociate neural patterns of “cognitive” (confidence dependent) and
“sensory” (confidence independent) category-selective information maintenance using multivariate decod-
ing techniques on human EEG data. We found evidence of two functionally independent feedback-related
neural processes operating in parallel. One pattern was global and related to decision confidence, likely
indicating cognitive maintenance of consciously reportable stimulus representations. The other pattern was
restricted to posterior electrode sites and unrelated to decision confidence, indicating sensory maintenance
of category-specific information within visual cortices.
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Introduction
The brain hosts a massive parallel processing pipeline

for the extraction of sensory input (Wolfe, 1994; Corbetta
and Shulman, 1998; Coull and Nobre, 1998; Itti and Koch,
1999; Vagharchakian et al., 2012; Marti et al., 2015). Part
of this processing machinery unfolds independently of
subjective awareness, whereas other processes may not.
To illustrate, fully masked (i.e., imperceptible) images still
activate many (sub)cortical modules, without enabling
conscious access (Dehaene and Changeux, 2011; Kunde
et al., 2012; van Gaal and Lamme, 2012; Boly et al., 2013).
Therefore, it is clear that mere activation of a specific brain
region does not support conscious perception. Although
considerable controversy exists, a broad scientific con-
sensus contends that feedback processes, either at a
local or more global scale, support the brain’s capacity to
maintain and integrate information over space and time
and are crucial for conscious perception and report (De-
haene and Naccache, 2001; Lamme, 2006; Tononi and
Koch, 2008).

Here, we aim to dissociate the neural patterns of “sen-
sory” and “cognitive” category-selective information
maintenance by linking perceptual processes to decision
confidence (i.e., metacognition), a proxy for stimulus re-
portability (Galvin et al., 2003; Kepecs et al., 2008; Kiani
and Shadlen, 2009; Resulaj et al., 2009). Previous studies
have revealed that confidence estimations, or metacog-
nition in general, are mediated by (anterior parts of) the
prefrontal cortex (Rounis et al., 2010; Fleming and Dolan,
2012), and that damage to these regions impairs meta-
cognitive insight (Fleming et al., 2014). By determining
how closely an observer’s confidence differentiates cor-
rect from incorrect perceptual decisions, confidence re-
ports can be used to calculate metacognitive sensitivity
(meta-d’), which reflects the extent to which the observer
is able to reflect on their own cognitive processes (Manis-
calco and Lau, 2012; Fleming and Lau, 2014).

Here, we presented masked faces or masked houses
and asked participants on every trial which stimulus cat-
egory they perceived and how confident they were in this
decision (Fig. 1A). First-order task performance was indi-
vidually titrated at 75% correct. A multivariate pattern
analysis (MVPA) classifier was trained and tested on EEG
activity to discriminate face versus house stimuli, sepa-
rately for high-confidence and low-confidence decisions.
Crucially, each classifier was trained on EEG activity at
one time sample and tested on activity at all other time
samples, allowing us to explore how category-selective
neural representations generalize across time. We aimed
to isolate those category-selective neural signals that de-

pend on decision confidence, reflecting cognitive mainte-
nance of information, from those neural signals that may
be independent of confidence, reflecting pure sensory
maintenance of information. We were also interested in
how expectation may modulate and bias category-
selective neural processing and perceptual interpretation.
Accordingly, we included bi-interpretable stimuli, which
were constructed by overlapping a face and a house
stimulus. Because each trial was preceded by a tone
predicting the likelihood that a face or a house stimulus
would appear we could explore how expectations might
bias perceptual interpretation and neural representations
when confronted with ambiguous visual input (Kok et al.,
2012; Pinto et al., 2015; Aru et al., 2016; Meijs et al.,
2018).

Materials and Methods
Participants

Twenty-five volunteers participated in exchange for
cash or course credit. All participants gave informed con-
sent and were naïve to the specific hypotheses. Partici-
pants had either normal or corrected-to-normal vision (17
females, 23 right-handed, mean age of 22.92 years). All
procedures were approved by the ethics committee.

Experimental setting
The experiment was programmed and executed using

Psychophysics Toolbox (version 3.0.14; Brainard, 1997)
within the MATLAB environment (R2010, MathWorks,
Inc.). Stimuli were presented on an Asus VG236H LCD
monitor (23” diagonal, 1920 � 1080-pixel resolution;
100-Hz refresh rate) at a viewing distance of 63 cm.

Experimental design, procedure, and stimuli
Figure 1A shows an overview of the trial procedure.

Each trial began with a central fixation point. After 150–
650 ms, a cue tone sounded for 200 ms. The tone pitch
indicated the likelihood that the upcoming target stimulus
would belong to a particular category (face or house). The
target image was presented 750 ms after cue tone onset
for a variable duration (see titration procedure below).
Target stimuli were immediately preceded and followed
by scrambled masks presented for 50 ms. A response
screen was presented 1000 ms after the second mask
offset, instructing participants to choose whether the pre-
sented image was a face or a house using a left-handed
(“z”) or right-handed (“m”) keyboard response. Stimulus-
response mappings were indicated by whether “face” and
“house” labels were shown in the left or right hemifield,
and were randomized on each trial to prevent motor
response preparation before the response screen. Partic-
ipants then made a second response to indicate how
confident they were in the accuracy of their discrimination
response: a “1” (“unsure”), “2,” “3,” or “4” (“sure”) key-
board press. Trials ended if no response was recorded
within 5000 ms of either response screen. Participants
completed 864 experimental trials, separated into 12
blocks. Experimental conditions were counterbalanced
within blocks.
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All stimuli subtended 16 � 20° visual angle, were grey-
scale, and were centrally presented on a black back-
ground. Target stimuli consisted of 180 unique house and
180 unique face images (90 male, 90 female, each pre-
sented twice during the experiment) and with 144 bi-
interpretable face-house images (each presented once).
Bi-interpretable images were created by randomly match-
ing each unique face image to a house image, making
each stimulus 50% transparent and superimposing them.
Five sets of 180 bi-interpretable images were con-
structed. One set was selected per participant (counter-
balanced across participants), from which 144 images
were randomly selected for presentation. Bi-interpretable
stimuli were not presented during practice and partici-
pants were not informed that such stimuli would be pre-
sented. Because bi-interpretable stimuli contained both
face and house features, they were not included in dis-
crimination performance measures. Masks were ran-
domly selected from 900 images comprised of scrambled
face and house images (parsed into 12 � 15 tiles and
randomly shuffled) that had been made transparent and
superimposed. The SHINE toolbox (Williams et al., 2009)
was used to equate all face, house, and bi-interpretable
stimuli for spatial frequency (equating rotational average
of the Fourier amplitude spectrum) and then for luminance
(equating luminance histograms) over 20 iterations.
House stimuli were taken from Egner et al. (2010), and

face stimuli were compiled from the Cohn–Kanade Facial
Expression Database (Kanade and Cohn, 2000) and from
Endl et al. (1998).

We titrated target image presentation duration to
achieve 75% discrimination accuracy. Duration was ini-
tially titrated trial-by-trial during 60 practice trials using a
weighted 3-up-1-down staircase procedure (Kaernbach,
1991) with a step size of 10 ms and an initial duration of 80
ms. Target duration for the first experimental block was
derived from this practice, resulting in initial target dura-
tions ranging from 10–30 ms across participants. Target
duration was then held consistent within experimental
blocks. If discrimination accuracy was above 80% for a
given block, target duration decreased by 10 ms for the
subsequent block; if accuracy dropped below 70%, du-
ration increased by 10 ms.

High-pitch (1800 Hz) and low-pitch (400 Hz) cue tones
validly predicted the appearance of their respective stim-
ulus categories with 80% accuracy, creating expectation
conditions based on whether the target stimulus could be
expected (i.e., valid cue) or unexpected (i.e., invalid cue)
on any given trial. A mid-pitch cue tone (1000 Hz) always
indicated an equal likelihood of either stimulus category
being presented (neutral cue condition). Each cue tone
was equally likely, across both single category and bi-
interpretable stimuli trials, and tone-stimuli category
likelihood mappings were counterbalanced across partic-

Figure 1. A, Trial sequence. Participants discriminated masked face and house stimuli and reported their confidence in this decision.
Participants were naïve to the presentation of an additional face-house combination category on some trials. Preceding tones induced
different expectations about the likelihood of presented stimulus category on a given trial, according to explicit tone-stimulus
contingencies. B, Behavioral results. d’ for discrimination responses as a function of reported confidence; ���p � 0.001, ns: not
significant.
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ipants. Participants were explicitly informed about tone-
stimulus contingencies but were instructed to make their
discrimination response based on their perception of the
actual image presented.

EEG recording and preprocessing
EEG was recorded using the 64-channel BioSemi Ac-

tiveTwo system (BioSemi) and digitized at a 512-Hz sam-
ple rate. Sixty-four scalp electrodes arranged according
to the 10-20 system (Jasper, 1958) were measured, along
with two reference electrodes on the earlobes. EEG pre-
processing and analyses were conducted using custom
scripts, the EEGLAB toolbox (v13.1.1; Delorme and
Makeig, 2004), and the Amsterdam Decoding and Mod-
eling toolbox (ADAM; Fahrenfort et al., 2018). Data were
re-referenced offline to the linked earlobes, high-pass
filtered at 0.1 Hz (cutoff frequency: –6 dB at 0.05 Hz), and
epoched from –500 to 2500 ms surrounding cue onset.
EEG activity was baseline corrected using the 200-ms
interval preceding cue onset. Trials containing muscle
artefacts within the 250-ms interval following target onset
were removed using an adapted version of the ft_arti-
fact_zvalue muscle artifact detection function from the
FieldTrip toolbox (Oostenveld et al., 2011). This function
applies a frequency filter between 110 and 140 Hz and
assigns a z-value to each time sample to determine the
degree to which power values in that frequency range
deviate from normality. Muscle artefacts were identified
as z score outliers �3 SDs from absolute value of the
minimum negative z value. This resulted in removal of
2.61% of trials. Data were then downsampled to 128 Hz.

Statistical analyses
Behavior

Additional trials were discarded if participants made an
anticipatory discrimination response (�200 ms; 0.25%) or
offered no response (0.51%). We used D-prime (d’; Type-I
sensitivity) as a bias-free measure of perceptual sensitivity
to the stimulus and metacognitive (meta-d’) efficiency as
a measure of a participant’s metacognitive capacity given
a particular level of task performance (for detailed de-
scription, see Fleming and Lau, 2014). Meta-d’ (Type-II
sensitivity) measures the degree to which participants are
consciously aware of the accuracy of their discrimination
judgments, as indicated by their confidence responses.
Meta-d’ is constrained by a participant’s d’ performance,
such that a metacognitively ideal observer will theoreti-
cally have a meta-d’ equal to their d’, while a suboptimal
observer will have a meta-d’ less than d’. Meta-d’ effi-
ciency was calculated as meta-d’ minus d’, thus higher
values (i.e., smaller negative values approaching zero)
indicate more metacognitively efficient performance.

EEG MVPA/decoding
A decoding classification algorithm using a 10-fold

cross validation scheme was applied to each participant’s
data. First, we randomized the order of trials and split the
dataset into 10 equally sized subsets. Face and house
stimulus classes were balanced in the training set by
duplicating underrepresented stimulus class instances at
random to match the number of instances of the largest

stimulus class. We then trained a linear discriminant clas-
sifier to discriminate between face and house stimulus
classes using 90% of the data, then tested it on the
remaining 10% of the data to ensure independence of
training and testing sets. This process was repeated 10
times to test all the data once. Features for classification
consisted of EEG amplitudes of individual electrodes.
Classification accuracy was calculated for each partici-
pant by first averaging the proportion of correct class
assignments for each stimulus category, then averaging
across stimulus categories, and finally averaging across
the 10 folds. This cross-validation procedure was re-
peated so that the algorithm was trained on activity at
each time sample (e.g., t1) and then tested on activity at
every time sample (t1, t2, t3, . . .), creating a temporal
generalization matrix of classification accuracies at each
possible combination of training and testing time samples
(King and Dehaene, 2014). The y-axis on the matrix pres-
ents the time when the classifier is trained and the x-axis
presents the time when the classifier is tested.

To keep the data and analytical strategy separate
(Kriegeskorte et al., 2009), we restricted analyses to
two non-overlapping electrode sets based on the inter-
national 10-20 EEG placement system nomenclature
(Jasper, 1958). The occipital-parietal set included oc-
cipital, occipito-parietal and parietal electrodes, cho-
sen to capture early visual and parietal “N170-like”
activity (Iz, Oz, O1, O2, POz, PO3, PO4, PO7, PO8, Pz,
P1, P2, P3, P4, P5, P6, P7, P8, P9, P10). The frontal-
central set included central, fronto-central, and frontal
electrodes, chosen to capture late frontal category-
selective representations related to confidence (Cz, C1,
C2, C3, C4, FCz, FC1, FC2, FC3, FC4, Fz, F1, F2, F3, F4;
Del Cul et al., 2007; Rounis et al., 2010; Fleming and
Dolan, 2012; Fleming et al., 2014; Marti and Dehaene,
2017). To check whether the observed effects were due to
our electrode selection method, we also performed a
control analysis using a more data-driven approach. All
significant correlations, main effects, and the interaction
between confidence and generalization type (on-diagonal
vs off-diagonal) observed for the Frontal-Central set also
held when selecting the data-driven set of electrodes that
best discriminated between face versus house stimuli
(i.e., capturing the more posterior P3-like late activity
observable in Fig. 2, bottom-right; POz, Pz, P1, P2, P3,
P4, P5, CPz, CP1, CP2, CP3, CP4, Cz, C1, C2, C3, C4,
FCz, FC1, FC2, FC3, FC4).

To uncover category-selective neural representations
with high signal-to-noise ratio (SNR), primary analyses
were based only on correct discrimination response trials.
However, we also report analyses using all (correct and
incorrect) trials to demonstrate that our selection method
did not affect our conclusions. First, classification was
conducted using each electrode set on all correct trials,
followed by separate classifications on correct trials with
low confidence (1 or 2 response; to compute classifier
accuracy of discriminating between faces and houses
when making responses with low confidence responses)
and with high confidence (3 or 4 response; to compute
classifier accuracy of discriminating between faces and
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houses when making responses with high confidence).
For these latter analyses, we always used the same clas-
sifier, training each fold using 90% of all correct re-
sponses regardless of whether these were low or high
confident, but testing on an independent 10% of either
only the relevant low- or the high-confidence subset of the
data. Thus, while stimulus class (face vs house) was
balanced in the training set, confidence (high vs low) was
not. Two participants were excluded from these
confidence-specific MVPA analyses for having a minimum
number of observations per condition of �10. We also
tested the classifier on the lowest indicated confidence
response (1), but only 13/25 participants had sufficient
trials per condition. Consequently, no formal analyses
were conducted, although the classifier accuracy values
are included in Figures 3B, 4B as a reference. As a control
analyses, we also tested the classifier on the two highest
confidence responses separately (3 and 4).

To determine whether a classifier could discriminate
neural activity elicited by a bi-interpretable stimulus solely
based on the expectation generated by the cue, we
trained a classifier on the entire dataset (cf. 90%) where a
correctly identified single face or house stimulus was
presented (as above). We then tested the accuracy of the
classifier in discriminating between bi-interpretable stimuli
preceded by a face versus a house cue (i.e., “expect face”
vs “expect house”). Finally, to determine whether expec-
tation itself was decodable, we trained (90%) and tested
(10%, 10 folds) on expected versus unexpected correct
trials, that is, whether the cue validly or invalidly predicted
the stimulus category. These latter classification proce-
dures trained and tested the algorithm on the same time
sample only (i.e., on-diagonal decoding, see description
below).

Topographic maps were computed by multiplying the
corresponding data correlation matrix with the classifier
weights to create a correlation/class separability map.
Such maps reflect the part of the signal that is strongly
correlated with the discrimination of the target variables
(faces and houses), while discarding high amplitude arte-
facts such as blinks even if these have a small (non-zero)
correlation with the target variables. For a more detailed
description, see Haufe et al. (2014). Accordingly, nonzero
activity on these maps reflects electrodes where the face
versus house discrimination signal was both strong and
highly correlated with the task, thereby minimizing poten-
tial influence of Type I and II artifacts and allowing inter-
pretation of neural sources. Maps were then normalized
across electrodes for each participant so that the mean
signal across electrodes was always zero (similar to taking
the average reference when re-referencing). Such a spa-
tial normalizing procedure much improves the ability to
average scalp maps across subjects without uneven con-
tribution to signal strength from different subjects, but
does make it harder to interpret the polarity of given
electrodes per se. Next, to select a data-driven set of
electrodes for which to replicate our findings, we calcu-
lated significant nonzero activity by conducting t tests for
each electrode against zero and correcting using cluster-
based permutation tests (1000 iterations, 0.05 threshold).

The sum of t values in an observed cluster of contiguously
significant electrodes was compared to the sum of con-
tiguously significant electrodes under random permuta-
tion. The same cluster-based permutation method was
applied, using time samples instead of electrodes, when
highlighting significant time intervals of above-chance de-
coding performance for the on-diagonal and off-diagonal
plots in Figures 3B, 4B , left panels.

Temporal dependency dynamics of decoding were in-
vestigated by examining classification accuracies along
the diagonal plane (train on t1/test on t1, train on t2/test on
t2, . . .) or an off-diagonal/horizontal plane (e.g., train on
t1/test on t1, t2, t3, . . .) of the temporal generalization
matrix. Decoding accuracy along the time-specific diag-
onal plane reveals when, and for how long, the same
information is decodable over time, but cannot distinguish
between whether decoding over time is supported by the
same neural processes or rather a dynamic chain of dis-
tinct processes. However, off-diagonal decoding accu-
racy across time samples identifies whether patterns of
decodable activity generalize to other time samples along
a horizontal plane, thus revealing the degree to which
underlying neural representations that support ongoing
decoding are qualitatively similar or distinct (King and
Dehaene, 2014; Stokes, 2015; King et al., 2016). By train-
ing the classifier at the time when we expect to observe
the earliest category-selective processing (150–200 ms)
and testing it on successive time samples, we can use
off-diagonal decoding to observe whether initial stimulus-
specific processing persists/re-activates over time and if
so, how it interacts with reported confidence. Together,
we can use these complementary dimensions to provide
a comprehensive profile of the presence and dynamic
development of category-selective representations during
high-confidence and low-confidence perceptual deci-
sions.

We examined decoding accuracy over two preselected
latency windows. As for the off-diagonal training time
interval, an early latency window (150–200 ms) was based
on when we expected initial category-selective stimulus
processing to peak (Bentin et al., 1996; Rossion and
Jacques, 2011; Carlson et al., 2013; Kaiser et al., 2016;
Marti and Dehaene, 2017). A later latency window (350–
500 ms) was expected to capture processes associated
with more global, stable and accessible representations
of semantic category that participants would use to select
a response (Kaiser et al., 2016; Marti and Dehaene, 2017).
Mean classification performance was taken across these
windows. Based on prior expectations (derived from Del
Cul et al., 2007; Marti and Dehaene, 2017), only the later
latency window was examined for frontal-central elec-
trodes as initial stimulus-specific processes were pre-
dicted to only occur over occipital-parietal electrodes.

Results
To anticipate our findings, confidence reports were

found to reliably track perceptual discrimination and we
observed the existence of three distinct category-
selective representations of a stimulus that were differen-
tially related to decision confidence. However, there was
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little evidence, behaviorally or electrophysiologically, for
any impact of expectation on the processing of bi-
interpretable stimuli. Accordingly, we detail the confi-
dence findings first and summarize the predominantly null
findings of expectation at the end of the results section.

Confidence results
Behavior

Overall, participants correctly discriminated 75.25% of
the single-category images (SD � 2.57%). A one-way
repeated measures ANOVA (rANOVA) was conducted on
perceptual sensitivity, signal detection theoretic d’, to the
masked image category using reported confidence level
as the within-participants factor. We observed that d’
increased monotonically as a function of the reported
confidence level (Fig. 1B). When participants indicated a
higher level of confidence, they were better able to per-
ceptually discriminate the image (F(1.63,39.09) � 37.51, MSE
� 1.08, p � 0.001). d’ was not significantly above zero at
the lowest confidence level (M � 0.10, SD � 1.13; t(24) �
0.41, p � 0.684). These findings reveal that participants

were able to accurately introspect their discrimination
performance.

Decoding category-selective electrophysiological
responses

Figure 2 shows the temporal generalization matrix of
classification accuracy when trained and tested on cor-
rectly identified face versus house stimuli, generalized
across training and testing time samples, and time-locked
to stimulus onset. These results thus reflect only stimulus
category decodability and not confidence. First, as ex-
pected, we see an early focused peak of decoding accu-
racy (small square) �150–200 ms after stimulus onset,
the latency range of the N170, and most prominently over
occipital-parietal electrodes (Carlson et al., 2013; Kaiser
et al., 2016; Marti and Dehaene, 2017). Second, later, a
sustained and stable decoding pattern (large square-
shaped pattern) was observed on the diagonal of the
generalization matrix with a central-posterior topography,
similar to the P3 ERP topography (for review, see Polich,
2011). Third, a modest level of accurate decoding perfor-
mance is also observed off-diagonal during this same late
latency (rectangle-shaped pattern), and indicates that the
pattern of activity observed here around 350–500 ms is
similar to the activity pattern trained on the early latency
window. This off-diagonal decoding pattern, which has
also previously been observed using MEG (Marti and
Dehaene, 2017), suggests sensory maintenance of
category-specific information. In follow-up analyses we
split these temporal generalization analyses according to
scalp topography (posterior vs anterior) and decision con-
fidence (high vs low).

Occipital-parietal electrodes
We first aimed to statistically determine how category-

selective decoding of perceptual brain responses was
related to confidence. To do so, we performed an rA-
NOVA with the factors confidence (high vs low), the la-
tency of EEG decoding (early vs late) and temporal
generalization type (on-diagonal vs off-diagonal) on de-
coding accuracy for the occipital-parietal electrode set
(Fig. 3, inset). We observed a significant three-way inter-
action (F(1,22) � 16.24, MSE � 0.01, p � 0.001), a confi-
dence by generalization interaction (F(1,22) � 16.86, MSE
� 0.01, p � 0.001), as well as significant main effects of
generalization type and decoding latency (Fs � 7.92; all
other Fs � 1.14). We carefully unpack these results in
follow-up analyses.

In Figure 3A, we show the generalization matrices sep-
arately for high confidence (bottom left panel) and low
confidence decisions (bottom right panel). The temporal
profiles of these matrices reveal a combination of early
decoding (150–200 ms), on-diagonal square-shaped de-
coding (350–500 ms), and off-diagonal rectangle-shaped
decoding (350–500 ms). Visual inspection of these tem-
poral generalization matrices shows a clear drop in de-
coding performance for low confidence decisions,
compared to high confidence decisions, related to the
on-diagonal square-shaped late decoding performance.
In contrast, early on-diagonal and late off-diagonal de-

Figure 2. Temporal generalization matrix of classification accu-
racies for face versus house discrimination across all electrodes.
The y-axis depicts when classifier was trained, and x-axis de-
picts when classifier was tested, relative to target stimulus onset.
Values not significantly different from chance are masked. ROIs
are denoted by inset black boxes. Below, correlation/class sep-
arability maps for each ROI, revealing underlying neural sources.
Note, because such maps are based on training data, the off-
diagonal rectangle ROI map would be comparable to that of the
early ROI.
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coding seem similar across the different levels of decision
confidence.

In Figure 3B, on-diagonal decoding performance is
shown, plotted separately for high and low confidence
decisions. We observed significantly higher decoding for
the earlier perceptual response, peaking at 164–188 ms,
compared to the later response (F(1,22) � 12.95, MSE �
0.01, p � 0.002), in line with previous reports of sharply
peaking category-selective brain responses in visual cor-
tex, both using EEG (Bentin et al., 1996; Rossion and
Caharel, 2011) and MEG (Carlson et al., 2013; Kaiser
et al., 2016; Marti and Dehaene, 2017). However, interest-
ingly, confidence was associated with classification per-
formance only in the later, and not during the early latency
window (confidence � latency interaction: F(1,22) � 6.09,
MSE � 0.01, p � 0.022; confidence main effect: F(1,22) �
3.66, MSE � 0.01, p � 0.069). Classification accuracy for
late EEG decoding was significantly better for high versus
low confidence decisions (MHigh � 0.544 vs MLow � 0.513,
t(22) � 2.40, SE � 0.01, p � 0.025), and did not exceed
chance-level for low confidence decisions (t(22) � 1.44, p
� 0.164). That the early brain responses were not related
to decision confidence (MHigh � 0.562 vs MLow � 0.555,
t(22) � 0.80, SE � 0.01, p � 0.433) is consistent with
predictions based on theoretical models of conscious

perception (Dehaene et al., 2006; Lamme, 2006; Del Cul
et al., 2007).

Crucially, off-diagonal decoding performance (trained
at 150–200 ms; Fig. 3C) revealed a strikingly different
temporal profile of results. Decoding was similarly higher
early in time than later in time (F(1,22) � 17.93, MSE � 0.01,
p � 0.001), and significantly above chance for late off-
diagonal decoding (ts � 2.48, ps � 0.021), reflecting
sensory maintenance of stimulus category-specific infor-
mation. However, in contrast to the on-diagonal decoding
patterns, no effects of confidence were observed (confi-
dence � latency interaction: F(1,22) � 2.45, MSE � 0.01, p
� 0.132; confidence main effect: F(1,22) � 0.01, MSE �
0.01, p � 0.962). Thus, training on early category-
selective EEG activity (150–200 ms) resulted in significant
classification of later EEG activity (at 350–500 ms) that
was unrelated to the level of decision confidence (MHigh �
0.517 vs MLow � 0.521, t(22) � 0.46, SE � 0.01, p � 0.648).

Including all response trials (cf. only correct trials) pro-
duced an identical pattern of results at the early sensory
decoding latency window. Early decoding accuracy was
above chance at each confidence level (ts � 5.31, ps �
0.001), but was indistinguishable between high versus low
confidence responses (ts � 0.71, ps � 0.870). This indis-
tinguishable early decoding accuracy for high-confidence and
low-confidence responses demonstrates that differences be-

Figure 3. A, Temporal generalization matrices of classification accuracies for face versus house discrimination for occipital-parietal
electrodes. On-diagonal values indicate time-specific values; off-diagonal values reflect cross-temporal generalization. Data re-
stricted to (B) on-diagonal and (C) off-diagonal planes of classification accuracy, with classification performance indicated on the
y-axis. In left panels, bold colored lines indicate when above-chance classification accuracy was observed (p � 0.05, cluster-based
permutation test). Black boxes designate the same ROIs as for the matrices. Right panels show mean decoding accuracy values
derived from within each ROI and used for statistical analyses. Black crosses denote decoding accuracy values when participants
were least confident (1, cf. low confidence: 1 and 2). Note, only 13 participants had sufficient data to complete classification procedure
for “no confidence” (label: “none”) condition and so it is included here only as a reference; �p � 0.05, ��p � 0.01, ���p � 0.001, ns:
not significant.
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tween confidence levels later in time are not attributable to
differences in bottom-up (sensory) processing or SNR.

Cluster-corrected analyses of decoding accuracy
against chance are shown across the entire time-window
of the decoding profiles in Figure 3B,C, bottom. These
analyses show that our results are not dependent on the
selection of specific time-windows. In addition, decoding
accuracy based on responses with the lowest indicated
confidence rating (1, denoted by black crosses, right
panels) revealed a very similar pattern of results to the low
confidence condition (1 and 2). No statistical analyses
were conducted for this lowest confidence condition as
only 13 participants had sufficient trials (see Methods for
details). This does however imply that one can decode
category information from visual cortex early, even when
participants behaviorally perform at chance (d’ does not
statistically deviate from chance for confidence level 1;
Fig. 1B). Because mean reported confidence level toward
faces was slightly different from that toward houses
(MFace � 2.90 vs MHouse � 2.40, t(23) � 5.25, SE � 0.10, p
� 0.001), we also tested the classifier separately on con-
fidence level 3 (n � 23) and confidence level 4 (n � 19).
For both confidence levels, we observed on-diagonal and
off-diagonal decoding accuracy above chance for early (ts
� 4.46, ps � 0.001) and late latency windows (ts � 2.23,
ps � 0.039), thereby arguing against differences in inter-
nal evidence/confidence between high/low confidence,
but rather category-selective stimulus information, as
driving the face versus house discrimination during the
late latency window.

We then investigated whether classification perfor-
mance at sensory regions (early, late on-diagonal, and
late off-diagonal) may positively predict perceptual sensi-
tivity (d’) and/or second-order metacognitive insight
(meta-d’ efficiency) across participants (two-tailed Spear-
man correlation analyses, corrected for multiple compar-
isons using Holm–Bonferroni method; Holm, 1979).
However, neither first-order (decoding on only correct
trials: rs � –0.47 to –0.20, ps � 0.018; decoding on all
trials: rs � –0.44 to –0.23, ps � 0.030) nor second-order
measures of performance (decoding on only correct trials:
rs � –0.23 to .26, ps � 0.207; decoding on all trials: rs �
–0.18 to 0.21, ps � 0.317) were positively correlated with
classification accuracy after Holm–Bonferroni correction
(if anything, correlations were observed in the opposite
direction than hypothesized).

Taken together, these findings support a late dissociation
whereby confidence is associated with category-selective
classifier performance for late on-diagonal (large square-
shaped region) EEG activity, but not for late off-diagonal
(rectangle-shaped region) EEG activity. Despite this differ-
ential relationship between category selective brain re-
sponses and reported confidence, such activity does not
predict behavioral category discrimination performance.

Frontal-central electrodes
We next turned to examining the relationship between

confidence and category-selective decoding of later and
more anterior brain responses, proposed to play an im-
portant role in metacognition (Rounis et al., 2010; Fleming

Figure 4. A, Temporal generalization matrices of classification accuracies for face versus house discrimination for frontal-central
electrodes. Data restricted to (B) on-diagonal and (C) off-diagonal planes of classification accuracy. Right panels show mean
decoding accuracy values derived from within each ROI; �p � 0.05.
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and Dolan, 2012; Fleming et al., 2014). The generalization
matrices in Figure 4A show the same drop in decoding
accuracy between high and low confidence decisions in
the late square-shaped region. As predicted, early (150–
200 ms) frontal-central brain responses were virtually ab-
sent, and not significantly decodable (Fig. 4A, small
square region; ts � 1.34, ps � 0.195) highlighting that
perceptual/information processing is restricted to sensory
areas early in time (�200 ms in this case; Del Cul et al.,
2007; Marti and Dehaene, 2017).

Both on-diagonal (Fig. 4B) and off-diagonal (Fig. 4C)
decoding performance are shown, plotted separately for
high and low confidence decisions. Here again, late EEG
decoding follows the same pattern as for the occipital-
parietal electrode sets, confidence was related to classi-
fication accuracy for on-diagonal, and not off-diagonal,
decoding (confidence � generalization: F(1,22) � 6.33,
MSE � 0.01, p � 0.020; generalization main effect: F(1,22)

� 6.17, MSE � 0.01, p � 0.021; confidence main effect:
F(1,22) � 2.22, MSE � 0.01, p � 0.150). As observed in
Figure 4B, late classification accuracy of on-diagonal de-
coding was significantly better for high versus low confi-
dence decisions (MHigh � 0.542 vs MLow � 0.512; t(22) �
2.20, SE � 0.01, p � 0.039), and was not better than
chance for low confidence decisions (t(22) � 1.12, p �
0.275). However, late classification accuracy of off-
diagonal decoding (i.e., when trained on earlier EEG ac-
tivity at 150–200 ms; Fig. 4C) did not depend on decision
confidence (MHigh � 0.518 vs MLow � 0.509; t(22) � 0.62,
SE � 0.01, p � 0.541). Moreover, late off-diagonal de-
coding for neither level of decision confidence was above
chance (ts � 2.18). Testing the classifier separately on
confidence level 3 (n � 23) and confidence level 4 (n � 19)
for frontal-central electrodes, both revealed late decoding
accuracy above chance for on-diagonal (ts � 3.53, ps �
0.002) but not for off-diagonal decoding (ts � 1.58, ps �
0.131).

Finally, we examined whether on-diagonal and off-
diagonal decoding of late frontal-central EEG activity
predicted behavioral performance. Classification perfor-
mance was not correlated with first-order perceptual sen-
sitivity (decoding on only correct trials: rs � 0.03–0.18, ps
� 0.384; decoding on all trials: rs � –0.11 to 0.09, ps �
0.612). However, we observed a significant positive cor-
relation between on-diagonal classification performance
and second-order metacognitive insight (decoding on
only correct trials: r23 � 0.61, p � 0.002, bootstrapped
95% CI [0.31, 0.82]; decoding on all trials: r23 � 0.56, p �
0.005, bootstrapped 95% CI [0.16, 0.77]). Participants
who were more metacognitively efficient maintained
stronger and more stable category-selective representa-
tions in frontal-central areas, consistent with the research
showing these areas contribute to metacognitive insight
(Rounis et al., 2010; Fleming and Dolan, 2012; Fleming
et al., 2014). This relationship did not hold for off-diagonal
activity (decoding on only correct trials: r23 � 0.38, p �
0.061; decoding on all trials: r23 � 0.28, p � 0.171).

We focused our analyses on a fronto-central region of
interest (ROI) for two reasons: (1) metacognitive insight is
associated with anterior parts of PFC, and (2) this creates

non-overlapping ROIs for our analyses. The critical inter-
action between confidence and generalization type for
classification performance, and the pattern of correlations
with first- and second-order discrimination behavior held
even when using a more posterior and data-driven elec-
trode set (for further details on selection method, see
Materials and Methods).

In summary, both occipital-parietal and frontal-central
electrode sets uncovered later decodable activity that
was related to confidence when a classifier was also
trained on late EEG activity (on-diagonal, large square),
but not when the classifier was trained on early EEG
activity (off-diagonal, rectangle). This late dissociation
suggests two functionally independent category-selective
representations of the stimulus temporally co-exist, one
that is related to confidence and one that is not. Here, the
frontal-central brain responses related to reported confi-
dence, also predicts higher levels of behavioral metacog-
nitive performance.

Expectation results
A secondary focus of the present research was to

determine the role of expectation on category-selective
processing. Specifically, we investigated whether a bi-
interpretable stimulus is more likely interpreted according
to the expected or unexpected stimulus category. How-
ever, expectation did not modulate the interpretation of
bi-interpretable stimuli. Behaviorally, there was an overall
preference to respond house (63% of responses), but this
was independent of the preceding tone type (expect-face
vs neutral vs expect-house cue; M � 0.61–0.67, SD �
0.10–0.11; F(1.64,39.37) � 2.77, MSE � 0.01, p � 0.085).
Similarly, we were unable to decode any on-diagonal
neural activity from these stimuli based on preceding
expect-face versus expect-house cues (ts � 1.36). This
shows that, with the present methodology, we could not
find an effect of expectation on the processing of bi-
interpretable stimuli.

For single stimulus category images, we observed a
significant effect of expectation on d’ (F(1.30,31.29) � 4.96,
MSE � 0.18, p � 0.025), driven by a significantly lower d’
for unexpected versus expected stimuli (t(24) � 2.24, SE �
0.13, p � 0.035). These data show some behavioral evi-
dence that expected stimuli were more easily perceived
than unexpected stimuli. However, there was no signifi-
cant impact of expectation on meta-d’ efficiency
(F(1.25,29.88) � 1.07, MSE � 0.31, p � 0.325). On-diagonal
decodability of the single stimulus category was not mod-
ulated by expectation (unexpected vs expected) for either
occipital-parietal (Fs � 1.58) or frontal-central electrode
sets (t(24) � –1.01, SE � 0.01, p � 0.282). Finally, we found
that expectation, as defined by validity of the cue (unex-
pected vs expected), was not decodable in itself (ts �
0.95).

Together, these data indicate that expectation, as ren-
dered by the tones, had little impact on either behavioral
performance or electrophysiological activity. We elabo-
rate further on the lack of any significant findings regard-
ing expectation in the Discussion section.
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Discussion
In a task where participants discriminated masked

faces and houses and indicated their confidence in these
decisions, we observed three distinct types of category-
selective neural activity patterns in human EEG traces.
These patterns were dissociable by their timing, scalp
topography, relationship with decision confidence, and
temporal generalization profile. First, we observed an
early peak in classification accuracy (150–200 ms),
unique for occipital-parietal electrodes and unrelated to
decision confidence. This decoding profile reflects rela-
tively early extraction of category-selective features in
posterior brain regions, observed previously (Carlson
et al., 2013; Kaiser et al., 2016; Marti and Dehaene, 2017).
Early decoding was independent of the selection of trials
used for decoding (whether including only correct trials or
all trials). Later in time (�350–500 ms), two additional
independent, but co-occurring, decodable patterns of
neural activity were observed. A sustained period of on-
diagonal classification (training and testing on the same
EEG signal) was observed at both occipital-parietal and
frontal-central electrode sets. Intriguingly, this activity
was strongly related to decision confidence and predic-
tive of an individual’s metacognitive insight into their first-
order perceptual decision (face/house discrimination). We
would like to note however that small-n correlations
should be interpreted with caution (Yarkoni, 2009). As
such, this widely observed signal may reflect the global
ignition of a broad fronto-parietal network (e.g., Global
Neuronal Workspace; Dehaene and Naccache, 2001; De-
haene et al., 2006) crucial for the cognitive maintenance of
category-specific stimulus characteristics, related to con-
scious access of the stimulus. Interestingly, later off-
diagonal classification performance was prominent for
occipital-parietal electrodes only. A classifier trained on
early sensory signals could generalize later in time and
this activity pattern was indistinguishable for high-con-
fidence and low-confidence responses. Thus, this activity
pattern likely reflects sensory maintenance of category-
selective stimulus information.

Several influential theories of consciousness try to ex-
plain how, when and where conscious perception
emerges from brain activity, and how this differs from
processing unconscious information (Rees et al., 2002;
Tononi and Koch, 2008; Haynes, 2009; Dehaene and
Changeux, 2011; Kunde et al., 2012; van Gaal and
Lamme, 2012; Boly et al., 2013). Although controversy
exists, most theories postulate that early feedforward pro-
cessing of information may be independent of conscious
access and that feedback from higher-level to lower-level
brain regions is crucial for conscious report. Feedback
mechanisms allow information to be integrated and ex-
changed among different neural modules and may enable
the maintenance of information over longer periods of
time. Although speculative, the two distinct category-
selective neural activity patterns observed here may relate
to different types of theorized feedback processes. The
late confidence-based (on-diagonal) pattern may indicate
global cognitive maintenance processes supporting con-
scious reportability and confidence, whereas the other

(off-diagonal) pattern, showing sensory maintenance of
category-specific information that was unrelated to
decision confidence, may indicate more local recurrent
processes within visual (sensory) cortices. Although in-
triguing, future studies are necessary to confirm this in-
terpretation of the present data.

Recent evidence, using similar decoding techniques on
human electrophysiological data, has shown that brain
processes multiple different stimuli (Marti and Dehaene,
2017) and stimulus characteristics (e.g., contrast, spatial
frequency) in parallel (King et al., 2016), outside the scope
of awareness. To illustrate, Marti and Dehaene (2017)
observed sustained off-diagonal decoding of stimulus-
evoked activity in an attentional blink paradigm. In their
task, a classifier trained to discriminate several image
categories (faces, places, body parts and objects) at
170-ms poststimulus onset, could significantly decode
MEG activity as late as 720-ms poststimulus onset. This
late phase of decoding was observed only for task-
relevant target stimuli (maintained for later report) and
those stimuli immediately preceding the target (likely re-
lated to broad attentional sampling). Consistent with our
interpretations here, the authors attributed their findings
to top-down reactivation of early sensory stages. Here,
we find converging evidence for such relatively long-
lasting sensory maintenance using EEG decoding tech-
niques, but crucially, we extend their findings by showing
that this type of sensory maintenance was unrelated to
the level of reported confidence.

While the absence of on-diagonal when compared to
off-diagonal decoding for low confidence trials (Fig. 3B vs
C) may be partly explained by differences in strength of
classifier training activity, SNR cannot itself explain why
the difference between high versus low confidence de-
coding accuracy was selectively observed for on-diagonal
and not off-diagonal decoding. Because both high and
low confidence decoding accuracy was always based on
training on the same trials, any differences observed dur-
ing testing were therefore due to differences in the testing
set (not the training set), and hence related to differences
in confidence. Moreover, given that early decoding was
indistinguishable between low and high confidence, the
later on-diagonal decoding difference between low and
high confidence (Fig. 3B) is unlikely attributable to SNR
differences, but rather reflect a substantive phenomenon
underlying the neural coding of confidence.

The timing (150–200 ms) and scalp topography of the
early peak of decoding performance, where we showed
initial category-selective processing, appears related to
the N170 ERP component, specific to face processing
(Bentin et al., 1996; Rossion and Jacques, 2011). Such
peaks of N170-like decoding performance have been
linked to activity in the occipital face area, superior tem-
poral sulcus and/or the fusiform face area (FFA) in ventral-
temporal cortex (Linkenkaer-Hansen et al., 1998; Halgren
et al., 2000; Haxby et al., 2000; Itier and Taylor, 2004;
Deffke et al., 2007; Rossion and Jacques, 2011). Based
on indications that the late off-diagonal decodable activity
reflects ongoing sensory maintenance, we speculate that
the signal reported here originates from similar higher
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visual/ventral areas. Here, N170-like decoding perfor-
mance was unrelated to decision confidence, consistent
with research showing no modulation of N170-like com-
ponents (or FFA activity) as a function of conscious re-
portability in continuous flash suppression (Suzuki and
Noguchi, 2013), attentional blink (Harris et al., 2013), di-
choptic fusion (Fahrenfort et al., 2012), and visuospatial
neglect (Vuilleumier et al., 2001). However, others have
observed reduced/absent N170-like processing for un-
seen faces presented during inattentional blindness
(Shafto and Pitts, 2015), object substitution masking (Re-
iss and Hoffman, 2007) and backward/sandwich masking
paradigms (Harris et al., 2011; Rodríguez et al., 2012).
While these discrepant findings are not easily reconciled,
one explanation could be that they depend on the degree
to which feedforward processing and/or (local) recurrent
processing in visual areas is disrupted by the manipula-
tion used to affect stimulus awareness/reportability (De-
haene et al., 2006; Breitmeyer, 2015). However, the
degree to which (early) face processing and category-
selective visual processing, in general, is affected by
different masking procedures, merits further experimen-
tation to substantiate this suggestion.

Previous neuroimaging studies have linked the ability
to estimate decision confidence to structural (Fleming
et al., 2010) and functional (Fleming et al., 2012, 2014;
Gherman and Philiastides, 2018) properties of the an-
terior prefrontal cortex. Here, we find only later category-
selective decodable activity (350–500 ms) over the
frontal-central electrodes predicted an observer’s meta-
cognitive performance. Perceptual and confidence deci-
sions were traditionally assumed to occur simultaneously,
with confidence reports based on the same information
relative to the same evidence continuum used for percep-
tual decisions (Kepecs et al., 2008; Kiani and Shadlen,
2009). Recent work has challenged this interpretation by
suggesting that perceptual decisions and confidence are
dissociable both neurally and behaviorally (Zylberberg
et al., 2012; Maniscalco et al., 2016; Peters et al., 2017).
Such work finds that while perceptual decisions are
based on an optimal balance of evidence, observers are
suboptimal in their metacognitive sensitivity/insight,
whereby confidence in a decision is more heavily
weighted by evidence for (vs against) a selected percep-
tual decision. The broad fronto-central distribution of the
late decoding pattern (350–500 ms) that we have linked to
decision confidence in the current study (for similar find-
ings, see Gherman and Philiastides, 2015, 2018) is remi-
niscent of similar signals observed in previous EEG
studies related to several cognitive processes associated
with challenging perceptual decisions. For example, a
similar broad central parietal positivity (CPP) has been
shown to scale with the amount of evidence accumulated
toward a decision (O’Connell et al., 2012; Kelly and
O’Connell, 2013), subjective ratings of stimulus visibility
during perceptual decisions (Del Cul et al., 2007; Tagli-
abue et al., 2018), and improvements in postsensory pro-
cessing due to category-selective perceptual learning
(Diaz et al., 2017). It may be that the signals that we
measure on the scalp with EEG reflect a mixture of deci-

sion processes, including evidence accumulation, confi-
dence computation, and error monitoring (Boldt and
Yeung, 2015), with further studies required to disentangle
and pinpoint the neural signatures of each process.

Finally, whether a particular semantic category was
expected or unexpected had little bearing on how a stim-
ulus was processed and reported in our study. The lack of
both electrophysiological and behavioral evidence sug-
gests that, generally, participants did not use the trial-
wise tones in their category discrimination decisions.
While cue tones could assist participants in their discrim-
ination decisions, they were not necessary for performing
the perceptual discrimination task, and so may explain the
lack of expectation effects. It is however notable that
others (for review, see Summerfield and De Lange, 2014)
observed an impact of expectation on low-level visual
processing using a near identical tone-cuing procedure.
Future work related to the role of task-relevance, training,
automaticity and/or motivational aspects related to task
performance on the (absence of) effects of expectation on
sensory processing may shed further light on this issue
(see also Slagter et al., 2018).
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