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A B S T R A C T

Cognitive control can involve proactive (preparatory) and reactive (corrective) mechanisms. Using a gaze-
contingent eye tracking paradigm combined with fMRI, we investigated the involvement of these different
modes of control and their underlying neural networks, when switching between different targets in multiple-
target search. Participants simultaneously searched for two possible targets presented among distractors, and
selected one of them. In one condition, only one of the targets was available in each display, so that the choice was
imposed, and reactive control would be required. In the other condition, both targets were present, giving ob-
servers free choice over target selection, and allowing for proactive control. Switch costs emerged only when
targets were imposed and not when target selection was free. We found differential levels of activity in the
frontoparietal control network depending on whether target switches were free or imposed. Furthermore, we
observed core regions of the default mode network to be active during target repetitions, indicating reduced
control on these trials. Free and imposed switches jointly activated parietal and posterior frontal cortices, while
free switches additionally activated anterior frontal cortices. These findings highlight unique contributions of
proactive and reactive control during visual search.
1. Introduction

During search for a visual object, a mental representation of the target
object is maintained in visual working memory to guide attention toward
potentially task-relevant regions (Desimone and Duncan, 1995; Olivers
and Eimer, 2011). In everyday situations, individuals may oftentimes try
to find multiple objects at the same time, which would require the
maintenance of more than one target representation. It has been shown
that such multiple-target search can be challenging, often resulting in
reduced search performance (Barrett and Zobay, 2014; Dombrowe et al.,
2011; Found and Müller, 1996; Juola et al., 2004; Liu and Jigo, 2017;
Maljkovic and Nakayama, 1994; Menneer et al., 2007), raising the
question as to how these multiple target representations are established
for, and updated during, search – in other words, how these represen-
tations are controlled.
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Recent work from one of our labs suggests that when observers look
for more than one target, they may dynamically prioritize one of multiple
potential target representations to guide search at any givenmoment (Ort
et al., 2017, 2018). Specifically, we found that performance in
multiple-target search depends on whether or not observers are given the
opportunity to freely choose the target to select. In a gaze-contingent
search paradigm, observers were instructed to always find one of two
potential target colors. Importantly, they could either freely select the
target to look for on a particular trial, as both targets would always be
available in each search display, or the choice was imposed upon them, as
only one of the two targets would be present on each trial. Eye movement
latencies showed that, relative to target repeats, target switches were
more costly when imposed thanwhenmade under free choice conditions.
In further support of this, van Driel et al. (2019) recently conducted
electroencephalography (EEG) measurements during free and imposed
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choice, and found that free switching between targets is associated with
pre-trial power suppression in the beta band over midfrontal electrodes –
a signal that has been linked to choice behavior (Donner et al., 2009;
Spitzer and Haegens, 2017). In contrast, forced target switches elicited
post-trial power enhancement in the delta/theta band – a signal that has
been associated with conflict detection (Cavanagh and Frank, 2014;
Cohen, 2014; Duprez et al., 2018). We interpret these eye movement and
EEG findings within an influential framework proposed by Braver
(2012), which assumes a division of cognitive control into two modes:
proactive and reactive control. Proactive control is invoked and main-
tained in anticipation of a task, whereas reactive control is triggered
whenever a conflict or unexpected event occurs. In multiple-target
search, the availability of all targets in a display allows for proactive
control, as observers can freely prepare for either target (cf. Arrington
and Logan, 2004, 2005; Meiran, 1996). In contrast, imposing a target (i.e.
by only presenting only one of the two targets in the search display)
would invoke reactive control, which is reflected in a costly switching of
attentional priority to the only available target. In the present study we
sought to uncover the brain areas underlying free and imposed
multiple-target search.

1.1. Brain areas involved in different modes of control

Cognitive control has been extensively investigated in the context of
the implementation of, and switching between, different task sets
(Meiran, 2010; E. K. Miller and Cohen, 2001). Task switches have been
associated with brain regions that are considered part of a general
cognitive control network that is distributed mainly over frontoparietal
regions of the brain (Cole and Schneider, 2007; Dosenbach et al., 2006;
Dosenbach et al., 2008; Duncan, 2010; Dove et al., 2000; Fedorenko
et al., 2013; Kim et al., 2012; Liston et al., 2006; Power and Petersen,
2013, A. B. Smith et al., 2004). However, it is unknown whether similar
brain areas are also involved in switching representations within one and
the same task, which is the case when observers hold multiple target
representations for the same visual search task, and how this would differ
for circumstances that enable different modes of control.

The distinction between proactive and reactive control has mostly
been studied in the context of interference control across various do-
mains, such as interference between competing working memory rep-
resentations (Burgess and Braver, 2010; Marklund and Persson, 2012),
between competing visual stimuli (De Pisapia and Braver, 2006; Jiang
et al., 2015), or between competing stimulus-response mappings (Braver
et al., 2003; Jiang et al., 2018; Ryman et al., 2018; Sohn et al., 2000). The
mode of control is commonly induced by manipulating the likelihood (or
predictability) of upcoming interference, following the assumption that
whenever individuals anticipate interference, they will strengthen pro-
active control. Some studies suggest that proactive and reactive control
are governed by different brain areas, but the findings are somewhat
inconsistent, which may be related to the different paradigms used, and
to an emphasis on differences in the temporal dynamics (with proactive
assumed to occur prior to task onset, while reactive follows conflicting
events). Based on their reviews of the literature, Braver (2012) as well as
Irlbacher et al. (2014) have suggested that both modes of control are
governed by a similar set of brain areas, but might be activated with
different dynamics, as proactive control can be instantiated in advance.
These areas include the lateral prefrontal cortex and posterior parietal
cortex, with relatively minor differences between them, whereas reactive
control may additionally recruit midfrontal regions when there is conflict
detection involved. Similar brain areas may therefore be involved during
control over target selection in multiple-target search.

Target selection in multiple-target search is associated with shifts in
feature-based attention between target-defining features. Such shifts of
feature-based attention have previously been linked to activity primarily
in posterior parietal (i.e. superior parietal lobule) and posterior, lateral
frontal regions (i.e. inferior frontal junction and dorsal premotor cortex;
Greenberg et al., 2010; Liu et al., 2003; Pollmann et al., 2006; Pollmann
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et al., 2000; Slagter et al., 2006, 2007; Wager et al., 2004). However, in
most of these studies, a feature shift was also associated with a change in
response (Greenberg et al., 2010; Liu et al., 2003; Pollmann et al., 2006;
Slagter et al., 2006, 2007). Moreover, these studies did not directly
compare different modes of control over such shifts. They measured ac-
tivity in response to either cue- or task-induced changes of the
task-relevant feature, but did not juxtapose self-generated (free) to
stimulus-induced (imposed) changes.

In one recent study, Gmeindl et al. (2016) did compare cue-induced to
self-generated (i.e. freely chosen) shifts of spatial attention. They found
similar posterior parietal activity during both types of shifts, while
self-generated shifts additionally activated the medial frontal cortex and
lateral frontopolar cortex. These medial frontal and frontopolar regions
have also previously been shown to be related to voluntary versus
imposed action selection (Demanet et al., 2013; Forstmann et al., 2006;
Orr and Banich, 2013; Passingham et al., 2010; Soon et al., 2008; Taylor
et al., 2008; Wisniewski et al., 2016; Wisniewski et al., 2015; J. Zhang
et al., 2013), and have been argued to be involved in the evaluation of
alternative goals in the context of exploratory behavior (Mansouri et al.,
2017; Pollmann, 2016). The same areas may therefore be involved when
observers choose to change target in visual search, but this is currently
unknown.

1.2. The present study

We sought to investigate differences in the locus or level of activated
brain regions when proactive and reactive control mechanisms operate in
a context of multiple-target search. Specifically, we set out to test
whether differences between free and imposed switches between targets
during visual search for multiple objects are accompanied by differences
in brain activity that might be linked to proactive and reactive control
processes. To that end, we adopted a fast-paced, gaze-contingent eye
tracking paradigm (Ort et al., 2017; illustrated in Fig. 1A) in combination
with event-related fMRI. Participants were always instructed to look for
two color-defined targets and to make an eye movement towards one of
them on every trial. In one block type, both potential targets were present
in a search display and participants were free to select either of them. In
the other type of block, only one target was present and the choice was
imposed. We instructed participants to either make (when choice was
free) or expect (when choice was imposed) target switches. We reasoned
that free target switches would be associated with proactive, preparatory
control mechanisms, while imposed switches would result in reactive,
compensatory control mechanisms. Differential neural activity for each
switch type would constitute evidence for proactive and reactive control
having unique contributions to target selection during multiple-target
search. Based on the literature on both task and attention shifts, we ex-
pected to find switch-related activity in the posterior parietal and pos-
terior frontal cortex for both switch types. In addition, we were interested
to explore potential differences in the control network for free and
imposed target switches. In line with the literature on self-generated
versus externally-cued choice, we expected activity in the lateral fron-
topolar cortex as well as the medial frontal cortex to be selectively active
during free switches.

2. Methods

2.1. Data and code availability

Data and code was made publicly available on osf. io (https://osf
.io/a8vxn). Unthresholded statistical maps were uploaded to neuro-
vault. org (https://neurovault.org/collections/5550/).

2.2. Participants

A sample of 22 participants (age: 21–35 years, M¼ 27.3; 10 females,
12 males) was recruited from the subject pool of the Leibniz Institute of
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Fig. 1. Illustration of the study design and behavioral
results. (A) Each block began with a cue indicating the
two target colors for the subsequent sequence of 40
search displays. Depending on the target availability
condition, each search display contained either one of
the two target colors or both of them. In case of only
one target color being available, there could still be
two targets carrying that color, to equate for the mere
number of targets present (see section 2.3). Partici-
pants were required to fixate one of the targets
(indicated here by an arrow, which was not present in
the display); this triggered the next display, which
appeared on an imaginary annulus surrounding the
location of the previously fixated target. (B) The bar
plots represent the mean saccade latencies on switch
trials and repeat trials for each level of target avail-
ability (one target vs. both targets). The gray lines
represent the mean saccade latencies for each
observer individually. Error bars represent the upper
limit of the within-subjects 95% confidence intervals
(Morey, 2008). (C) The violin plots depict the distri-
bution of switch costs, which were computed by
subtracting repeat saccade latencies from switch
saccade latencies, separately for the target availability
conditions. The horizontal lines in the box plots
represent the first, second (median), and third quar-
tiles. The vertical lines represent the distance between
minimum (lower quartile - 1.5 * interquartile range)
and maximum (upper quartile þ 1.5 * interquartile
range). Single dots indicate individual outliers. (D)
Schematic and simplified equation of a drift diffusion
model (adapted from Kloosterman et al., 2019). e
denotes encoding time, d denotes decision time, and m
denotes motor execution. (E) HDDM results indicating
the posterior probability distributions for drift rates,
separately for all experimental conditions.
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Neurobiology in Magdeburg. Three individuals were excluded due to
insufficient eye tracking accuracy, reducing the final sample to 19 par-
ticipants. All participants gave written consent according to the Decla-
ration of Helsinki and were reimbursed with 30 Euros. They reported
normal or corrected-to-normal visual acuity and color vision and were
naive to the purpose of the experiment. The study was approved by the
research ethics board of Otto-von-Guericke University Magdeburg.

2.3. Stimuli, procedure, and design

The stimulus set consisted of five colored disks with a radius of 0.6�

visual angle (dva). These colors were blue (RGB-values: 0, 130, 150), red
(240, 0, 0), green (70, 135, 0), brown (175, 100, 75), and purple (180,
80, 170). All stimulus colors were isoluminant (M¼ 21 cd/m2) and pre-
sented on a uniform gray background (197, 197, 197). A search display
was composed of five disks placed on an imaginary annulus around fix-
ation with a radius randomly drawn from values between 3.6 and 4.4 dva
around the starting point. Any two adjacent disks had an angular distance
3

of at least 45�.
A block was initiated once participants steadily fixated a central white

dot. First, a white fixation cross was presented in the center of the screen
for 500m s, followed by the cue display for 2500m s and another fixation
cross for 500m s (Fig. 1A). In the cue display, two colored disks were
presented 1.0 dva to the left and right of fixation to mark these colors
task-relevant for the upcoming sequence of 40 search displays. In each
search display, participants were required to select a target-colored disk
among a set of five disks by making a saccade toward it. After target
fixation, the search display disappeared and the fixated target was
replaced by a black ring to provide participants with a fixation point
during the intertrial interval (uniformly jittered between 950 and
1050m s). Because the coordinates of the previously fixated target served
as the starting point for the next display, the search displays moved
across the screen throughout a block. To make sure that search displays
would fall within the margins of the screen, stimuli were moved closer to
each other on that part of the annulus that was closest to the center of the
screen, whenever a search display approached an edge of the screen.
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Importantly, the relative positions of the targets in the search display
remained unpredictable. Saccades had to land within a radius of 0.9 dva
to the center of a target to trigger the next search display. If participants
fixated one of the distractors, they received auditory error feedback and
were required to make a corrective eye movement toward a target. The
search was aborted if no target was fixated within 3000m s, and a new
search display appeared, centered at the same location.

There were two main factors in this experiment: target availability
(whether only one or both targets were present in the search display),
and transition type (whether target selection switched or repeated from
one trial to the next). The target availability factor was controlled at the
block level by presenting either only one, or both of the targets in the
display. In the both-targets condition, both cued targets appeared in the
search display. In the one-target condition, only one of the targets was
present. The transition type factor (target repeat vs. target switch) was
determined by the observer (both-targets blocks) or by a random sam-
pling procedure (one-target blocks).

In both-targets blocks, participants were instructed that they were
free to fixate either of the target colors. However, to make sure that there
would be sufficient switch trials, and that the time between two
consecutive switch trials would be long enough for the BOLD response
triggered by each of them to not overlap, it was emphasized to partici-
pants that the total number of target switches in a block of 40 search
displays should roughly be in the range of five to eight. The sampling
procedure in one-target blocks then randomly selected (with replace-
ment) a sequence of repeat and switch trials from a pool of sequences that
were recorded during both-targets blocks. The motivation behind this
was to match one-target blocks and both-targets blocks in terms of switch
rate and number of consecutive repeat trials. Importantly, neither fea-
tures nor positions of the stimuli were replayed but only the sequence of
switch and repeat trials. Because we did not yet have any sequences to
present at the outset of the experiment, we initialized a pool with four
arbitrarily prespecified sequences of switch and repeat trials (one each
for five, six, seven, and eight switches per block). To check whether
switch rates indeed did not differ between target availability conditions,
we ran a paired-samples t-test and found a slight, but non-significant
difference (both-targets available: 6.4 switches, one-target available:
6.9 switches, t(18)¼ 1.9, p¼ .07, Cohen’s d¼ 0.49, BF10¼ 1).

Both-targets available and one-target available blocks would differ
not only in terms of target availability, but also in the mere number of
targets in the display, which would make the one-target available con-
dition more difficult than the both-targets available condition. Therefore,
we included trials in the one-target available condition in which there
were two target objects, but both carried the same target color, so that
still only one target color was present in the search display (target
duplicate, e.g. on blocks in which red and blue were task-relevant, there
could be trials with two red targets or two blue targets, but never with a
red and a blue target). In addition, we included trials in which two dis-
tractors shared a color (distractor duplicate; e.g., on blocks in which red
and blue were task-relevant, there could be trials with two green items,
but only one red or one blue item), so that participants could not identify
the target object simply by detecting a feature duplicate. Likewise, both-
targets blocks also contained target duplicate trials (two out of three
targets had the same color; e.g., on blocks in which red and blue were
task-relevant, we had trials with one red and two blue target objects) as
well as distractor duplicate trials (e.g., on blocks in which red and blue
were task-relevant, there were trials with one red target, one blue target,
and two green distractors). As a result, in each target availability con-
dition, one half of trials contained a target duplicate and the other half
contained a distractor duplicate. This way, neither the number of targets
nor the number of unique colors in the display was predictive of target
availability. Supplementary Table S1 provides schematic representations
of all types of search displays. Past experiments using a similar paradigm
have confirmed that behavior and ensuing switch costs are consistently
unaffected by this manipulation (Ort et al., 2017, 2018), as we also
confirm here (see section 3.1). Furthermore, to investigate whether there
4

would be other experimental variables that influenced the choice
behavior of the participants we ran a series of control analyses. These
analyses are summarized in the Supplementary Material online and
Fig. S1.

Because we did not have an eye-tracker available outside of the
scanner, participants practiced a version of the task in which target se-
lection responses were made using mouse tracking instead of eye
movements (although this naturally involves making an eye movement
to the target too). They performed this task before the fMRI session
started until they felt confident they understood the task structure. A
scanning session consisted of nine functional runs, each 7min long. One
participant requested to terminate the last run early (leaving eight runs of
data), while another participant completed ten runs because he expressed
the wish to do another run as he liked doing the experiment (data of this
run were included). In a single run, both-targets and one-target blocks
alternated repeatedly until the end. For the first block in a run, the target
availability condition switched relative to the last complete block of the
previous run. To make sure that both block types would occur each at
least twice per run and that a block would not exceed the run duration, a
block was interrupted after 88 s (mean complete block duration¼ 73 s),
or 5 s before the run finished. This resulted in up to five complete blocks
per run and, on average, 32 complete blocks per session. Nevertheless,
incomplete blocks were still analyzed up to the point of termination.

2.4. Apparatus and functional MRI acquisition

The experiment was designed and presented using the OpenSesame
software package (version 3.1.9; Mathôt et al., 2012) in combination
with PyGaze (version 0.6), an eye-tracking toolbox (Dalmaijer et al.,
2013). Stimuli were back-projected on a screen with a resolution of
1280� 1024 pixels, at a viewing distance of 60 cm. Participants viewed
the screen via an IR-reflecting first surface mirror attached to the head
coil. Eye movements were recorded with the EyeLink 1000 remote
eye-tracking system, (SR Research, Mississauga, Ontario, Canada) at a
sampling rate of 1000Hz. The experimenter received real-time feedback
on system accuracy on a second monitor located in an adjacent room.
After every run, eye-tracker accuracy was assessed and improved as
needed by applying a 9-point calibration and validation procedure (mean
calibration error was 0.48 dva).

Images were acquired using a 3 T Philips Achieva dStream MRI
scanner with a 32 channel head coil. Functional images were recorded
using a T2*-weighted single-shot gradient echo-planar images sequence
with following parameters: 35 axial slices parallel to the AC-PC axis
(ascending order), slice thickness ¼ 3 mm, in-plane resolution¼ 80 � 78
voxels (3 mm� 3mm), FOV¼ 240mm� 240mm, inter-slice gap of 10%
(0.3 mm), whole-brain coverage, TR ¼ 2 s, TE ¼ 30 m s, flip angle ¼ 90�,
parallel acquisition with sensitivity encoding (SENSE) with reduction
factor 2. After the first five scans were discarded, 210 scans were ac-
quired per functional run. Structural images were recorded using a T1-
weighted (T1w) MPRAGE sequence with following parameters: 192 sli-
ces, slice thickness ¼ 1 mm, in-plane resolution ¼ 256 � 256 voxels (1
mm � 1 mm), FOV ¼ 256 mm � 256 mm, TR ¼ 9.7 m s, TE ¼ 4.7 m s,
inversion time ¼ 900 m s, flip angle ¼ 8�. Distortions of the B0 magnetic
field, as well as pulse oximetry and respiratory trace were recorded, but
these data were not further processed.

2.5. Eye-tracking data preprocessing

We compared the saccade latencies of eye movements (dwell time
before a saccade was executed) for repeat trials (current target category
the same as the previous one) with those for switch trials (current target
category different from the previous one) for both target availability
conditions separately. We took the first saccade after search display onset
with an amplitude threshold of 1 dva around initial fixation, provided
that a saccade was directed toward the selected target (i.e. its direction
deviated less than 30 angular degrees from the vector from fixation to the
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target). This resulted in an average of 25.5% of all trials being removed.
Note, as we used only the first saccade of a trial and participants needed
to select a target before actually fixating it, our paradigmmeasures covert
selection process. Next, a saccade latency filter was applied, in which
saccades quicker than 100m s and slower than 3 standard deviations
above the block mean for that participant were excluded (2.2% of all
search displays). If no target was being fixated, as could have happened
when the eye tracker calibration had deteriorated too much for that trial,
both the current as well as the next search display were excluded because
neither could be labeled as a switch or repeat (10.6% of all search dis-
plays). For the same reason, we excluded the first search display of each
block (2.7% of all search displays). If the distance between the stimuli
was lowered to prevent the search displays to fall outside the screen, two
stimuli could be too close to each other to unambiguously decide which
of the two was fixated. Trials on which this happened were also excluded
(7.4% of all search displays). In total, 34.4% of all trials were thus
removed during preprocessing (note that a single trial could meet mul-
tiple exclusion criteria). This is a typical rejection rate for this paradigm
(Ort et al., 2017, 2018; van Driel et al., 2019). Inferential statistics were
carried out with the afex R-package (Singmann et al., 2016).

2.6. Hierarchical drift diffusion modeling

To gain more insight into target selection beyond simple comparisons
of mean saccade latencies across conditions, we also performed drift
diffusion modeling (DDM) on our data. DDMs can estimate latent
decision-related parameters in two-alternative choice experiments based
on response time distributions and choice probabilities (Wiecki et al.,
2013). For example, participants might be more cautious to respond
when only one target is available than when both target colors are pre-
sent. Similarly, participants might need longer to select a stimulus to
fixate on switch trials when only one target is present. In these models,
decision-making is assumed to be a noisy information accumulation
process in favor of one or the other alternative that continues until a
threshold for one option is exceeded and the corresponding response is
executed (e.g. Ratcliff and Rouder, 1998). We used a hierarchical
Bayesian DDM, as implemented in the python-library HDDM (version
0.6; Wiecki et al., 2013), which has the advantage of simultaneously
estimating group and individual-subject parameters as well as obtaining
a measure for the estimates’ uncertainty.

The standard DDM framework provides estimates for four parame-
ters: drift rate v, non-decision time t, boundary separation a, and starting
point z (see Fig. 1D). The drift rate represents the speed with which ev-
idence is accumulated during a decision process. It is related to the dif-
ficulty of a decision, with hard decisions corresponding to low drift rates
and easy decisions to high drift rates. The non-decision time signifies the
time needed to encode the stimulus and execute the motor response and
is therefore not related to the decision process itself. The boundary
separation parameter reflects how much evidence needs to be accumu-
lated before a decision is made, therefore representing response caution
(speed-accuracy trade-off). Close boundaries lead to quick and more
inaccurate decisions, whereas wide boundaries lead to slower, but more
accurate decisions. The starting point denotes whether there is an a priori
bias for one of the options.

It has been shown that task repeats are associated with higher drift
rates than target switches, plausibly reflecting faster evidence accumu-
lation when a target is repeated (e.g. Karayanidis et al., 2009; Schmitz
and Voss, 2012). Based on this finding, we also expected to find higher
drift rates for target repeats than for target switches. However, if in-
dividuals prepare a target prior to search display onset in both-targets
blocks, drift rates for free target switches should likely be higher than
for imposed switches, potentially even be as high as the drift rate for
target repeats. Furthermore, in Ort et al. (2017), we found base rate
differences between both-targets and one-target blocks in terms of
saccade latencies: Saccades were generally faster in both-targets blocks
than in one-target blocks, irrespective of transition type. This effect might
5

imply strategic differences, such as increased response caution when only
one target was available relative to when both were present. To inves-
tigate this hypothesis, we estimated a separate boundary separation for
both-targets and one-target blocks. As the boundary separation is usually
assumed to be under control of individuals and switch and repeat trials
were unpredictable in one-target blocks, we did not separately estimate
this parameter for repeat and switch trials.

Unlike in standard two-forced choice tasks, there was no single cor-
rect or incorrect response in our task. In fact, on every trial, participants
could make five possible responses, corresponding to each stimulus
(targets and distractors). Therefore, to make our paradigm compatible
with the DDM framework, we did not consider individual stimuli as
response options, but only distinguished correct (saccades to targets)
from incorrect (saccades to distractors) responses. To test our hypotheses
about the influence of the experimental conditions on drift rate and
boundary separation, we ran four models, in which we manipulated
which parameters were free to vary across experimental conditions.
These models were: (1) basic model, in which both boundary separation
(a) and drift rate (v) were fixed across conditions; (2) decision boundary
model, in which a could vary between target availability conditions and v
was fixed; (3) drift-rate model, in which v could vary between target
availability and transition type conditions, and a was fixed; (4) full
model, in which a and v could vary between target availability condi-
tions, and v could also vary between transition type condition. We did not
estimate intertrial variability of starting point and drift rate in any of the
models and fixed the estimate for starting point and non-decision time
across conditions, as condition-specific differences in those parameters
were implausible. Furthermore, we chose to use informative priors (see
Wiecki et al., 2013). Nevertheless, once we identified the best model, we
also ran it with non-informative priors as control analysis; the results
were virtually identical. Supplementary Table S2 includes the full spec-
ifications of all models that were tested.

For every model, 50,000 steps were sampled with Markov Chain
Monte Carlo (MCMC). The first 20,000 samples were discarded (“burn
in”) and only every fifth sample was kept (“thinning”) to facilitate
convergence. Convergence was tested by visually inspecting all posterior
distributions (mc-trace, auto-correlation and marginal posterior histo-
gram) of each parameter, and computing the Gelman-Rubin (R-hat)
convergence statistic. The data that were fed into the model were less
stringently preprocessed than for the saccade latency analysis. Specif-
ically, neither the first saccade was required to be directed to the even-
tually fixated target, nor were error trials excluded, because the DDM
utilizes both correct and incorrect trials to model reaction time
distributions.

The best model was selected based on the lowest deviance informa-
tion criterion (DIC). Even though the DIC penalizes increased numbers of
parameters in a model, it still has a bias to prefer more complex models
(Wiecki et al., 2013). Therefore, it should only be used as a heuristic for
model selection. Condition-specific differences in the parameters of the
selected model were analyzed using a Bayesian approach, that is, we
sampled from the posterior distributions of the parameters and compared
the likelihood of samples being lower in one condition relative to the
other. We considered values larger than 97.5% or smaller than 2.5%
significant. Note, even though these posterior probabilities are not the
same as confidence intervals, they can be interpreted in a similar way
(Wiecki et al., 2013). To test the predictive quality of the model, we
compared actual data to simulated data, sampled from the posterior
distribution of the fitted model and evaluated the correspondence across
several summary statistics.

2.7. Functional MRI preprocessing

FMRI data was preprocessed using FMRIPrep version 1.0.8 (Esteban
et al., 2018), a Nipype (Gorgolewski et al., 2011, 2018) based tool. Each
T1w volume was corrected for intensity non-uniformity using N4Bias-
FieldCorrection v2.1.0 (Tustison et al., 2010) and skull-stripped using
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antsBrainExtraction.sh v2.1.0 (using the OASIS template). Brain surfaces
were reconstructed using recon-all from FreeSurfer v6.0.0 (Dale et al.,
1999), and the brain mask estimated previously was refined with a
custom variation of the method to reconcile ANTs-derived and
FreeSurfer-derived segmentations of the cortical gray-matter of Mind-
boggle (Klein et al., 2017). Spatial normalization to the ICBM 152
Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009) was
performed through nonlinear registration with the antsRegistration tool
of ANTs v2.1.0 (Avants et al., 2008), using brain-extracted versions of
both T1w volume and template. Segmentation of cerebrospinal fluid
(CSF), white-matter (WM) and gray-matter (GM) was performed on the
brain-extracted T1w using fast (Y. Zhang et al., 2001) in FSL v5.0.9
(Jenkinson et al., 2002).

Functional data were motion corrected using mcflirt (FSL v5.0.9).
“Fieldmap-less” distortion correction was performed by co-registering
the functional image to the same-subject T1w image with inverted in-
tensity (Huntenburg, 2014; Wang et al., 2017) and constrained with an
average fieldmap template (Treiber et al., 2016), implemented with
antsRegistration (ANTs). This was followed by co-registration to the
corresponding T1w using boundary-based registration (Greve and Fischl,
2009) with 9 degrees of freedom, using bbregister (FreeSurfer v6.0.0).
Motion correcting transformations, field distortion correcting warp,
BOLD-to-T1w transformation and T1w-to-template (MNI) warp were
concatenated and applied in a single step using antsApplyTransforms
(ANTs v2.1.0) using Lanczos interpolation. After the preprocessing with
FMRIPrep, functional data were further high-pass filtered at 1/50 Hz
using the fslmaths implementation of Nipype.

Physiological noise regressors were extracted applying CompCor
(Behzadi et al., 2007). Principal components were estimated for
anatomical CompCor (aCompCor). A mask to exclude signal with cortical
origin was obtained by eroding the brain mask, ensuring it only con-
tained subcortical structures. For aCompCor, six components were
calculated within the intersection of the subcortical mask and the union
of CSF and WM masks calculated in T1w space, after their projection to
the native space of each functional run. Frame-wise displacement (Power
et al., 2014) was calculated for each functional run using the imple-
mentation of Nipype. Many internal operations of FMRIPrep use Nilearn
(Abraham et al., 2014), principally within the BOLD-processing work-
flow. See https://fmriprep.readthedocs.io/en/1.0.8/workflows.html for
more detail on the pipeline.

2.8. Functional MRI analysis

2.8.1. General linear model
To examine brain activity related to our experimental conditions,

we ran an event-related general linear model on the whole brain,
separately for each run of each subject. Prior to modeling, functional
time series were spatially smoothed with a 5mm FWHM Gaussian
kernel with a nipype implementation of SUSAN (S. M. Smith and Brady,
1997). We separately modeled all combinations of our experimental
conditions (both-targets/switch, one-target/switch, both-targets/repeat,
one-target/repeat) as well as error trials and the response to the cue
display, using display onset times relative to the start of the run as event
onset times and the response times as event durations. These events were
convolved with a canonical hemodynamic response function (double--
gamma), and, together with a number of nuisance regressors, formed the
design matrix. Nuisance regressors include the temporal derivative of
each event type, motion-related parameters (three regressors each for
translation and rotation), framewise displacement (FD), and six
anatomical noise regressors (aCompCor). Finally, all volumes with a FD
value greater than 0.9 were treated as motion-related outliers and
censored, that is effectively excluded from the model. Finally, the data
was prewhitened with an autoregressive model to account for temporal
autocorrelation (Woolrich et al., 2001). The resulting t-statistic maps
were combined across runs within participants in a fixed-effect analysis.
Next, group analysis was performed with threshold-free cluster
6

enhancement (tfce; S. M. Smith and Nichols, 2009), a voxel-based type
statistic that combines the height and spatial extent of local activations.
The transformed p-value maps were corrected with nonparametric per-
mutation testing (5000 permutations) as implemented in FSL’s randomise
(Winkler et al., 2014). Finally, the corrected maps were registered to the
FreeSurfer surface (fsaverage) coordinate system, using registration
fusion (Wu et al., 2018). All reported results were initially thresholded at
α ¼ .05, however, for illustration purposes, activity maps were also
thresholded at the more stringent α ¼ .01 and shown as overlays (all
applied to p-values corrected for multiple comparisons as per above).

2.8.2. Deconvolution
To gain further insight into the time course and extent of the BOLD

response as triggered by each event type, we ran a deconvolution analysis
in brain regions that are typically considered part of the multiple-demand
(MD) network, that has been associated with cognitive control in a va-
riety of contexts (Duncan, 2010; Fedorenko et al., 2013), plus showed
generic switch-related activity in our GLM analysis. To do this, we first
converted the preprocessed functional data to represent the percent
signal change of the time series, concatenated them across runs and
averaged the resulting series within each region of interest (ROI). We
defined ROIs based on an existing set of masks of MD subregions
(Fedorenko et al., 2013). These ROIs were then combined with voxels
that showed significant switch-related activity (collapsed over target
availability) in our GLM analysis, yielding 23 ROIs in total. The decon-
volution was performedwith nideconv (de Hollander and Knapen, 2018).
We used the same regressors as in the GLM analysis with the exception
that the temporal derivative regressors were not included. All other re-
gressors were convolved with a Fourier basis set, comprising an intercept
and four sine-cosine pairs. Prior to estimation, the design matrix was
oversampled 20-fold to improve the temporal resolution. For each re-
gressor, beta weights were estimated with ridge regression for each
participant separately. The deconvolved time series were extracted from
the beta weights and averaged across participants. To statistically test for
significant activations, we used a permutation test with 1000 permuta-
tions (MNE - one-sample t-test; Gramfort et al., 2013) and a cluster-based
approach to correct for multiple comparisons. Finally, to test for potential
onset differences between proactive and reactive switch-related activity,
we used fractional peak latency in combination with the jackknife
approach (Liesefeld, 2018; Luck, 2014; Miller et al., 1998). In doing so,
we averaged the deconvolved time series of all but one participant and
identified the time point at which the time series reached 50% of the
peak, separately for the proactive and the reactive conditions. To miti-
gate the influence of local extreme values on the latency estimation, for
every time point we averaged the amplitude over five time consecutive
points (centered at the current time point). We repeated this procedure
leaving out each participant once and computed a paired-sample t-test
over the onset estimates. To correct for the artificially reduced error term
in the jackknife approach, we followed Miller et al. (1998) by effectively
dividing the t-statistic by the degrees of freedom.

3. Results

3.1. Behavioral results

We observed switch costs (longer saccade latency after target
switches than target repetitions) only in one-target available blocks but
not in both-targets available blocks (Fig. 1B and C). This was statistically
confirmed by a two-way repeated-measures ANOVA with target avail-
ability (both-targets available vs. one-target available) and transition
type (repeat vs. switch) as factors on saccade latency. This ANOVA
revealed significant main effects of target availability (F(1, 18)¼ 18.3,
p< .001, η2 ¼ .50) and transition type (F(1, 18)¼ 23.3, p< .001, η2 ¼
.56), and a significant interaction between them (F(1, 18)¼ 16.7,
p< .001, η2 ¼ .48). A Bayes Factor analysis confirmed this pattern by
showing that the model including both main effects and the interaction

https://fmriprep.readthedocs.io/en/1.0.8/workflows.html
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effect explains the data best (BF¼ 7.8� 105) and was 12.2 times as likely
as the next best model including only the main effects. Overall, saccade
latencies were lower in both-targets blocks than in one-target blocks, and
lower on switch trials than on repeat trials. Critically however, significant
switch costs emerged only in one-target blocks (target repeat: 388m s vs.
target switch: 452m s; t(18)¼ 5.1, p< .001, Cohen’s d¼ 0.63), and not
on both-targets blocks (target repeat: 374m s vs. target switch: 388m s;
t(18)¼ 2.0, p¼ .06, Cohen’s d¼ 0.20). Bayesian t-tests confirmed this
conclusion by providing very strong evidence for the presence of switch
costs in the one-target condition (BFSwitchCosts¼ 374), but no conclusive
evidence for either the presence of absence of switch costs in the both-
targets condition (BFSwitchCosts¼ 1.2).

Next, we analyzed fixation accuracy, that is, the proportion of trials
on which participants fixated a target relative to all trials (see Table 1).
The data pattern here confirms the saccade latency results with switch
costs in one-target blocks and no switch costs in both-targets blocks,
precluding an interpretation in terms of a speed-accuracy tradeoff. To test
these results, we ran a two-way repeatedmeasures ANOVAwith the same
factors on accuracy, which also yielded significant main effects of target
availability (F(1, 18)¼ 42.6, p< .001, η2 ¼ .70) and transition type (F(1,
18)¼ 37.8, p< .001, η2 ¼ .68), as well as a significant interaction be-
tween them (F(1, 18)¼ 28.6, p< .001, η2 ¼ .61). Again, this was sup-
ported by a Bayes Factor analysis indicating that the full model
(BF¼ 1.8� 1010) is 1746 times more likely than the model with only
main effects (BF¼ 1.8� 107).

Finally, to test whether the different display types (target duplicate
vs. distractor duplicate) had an influence on the presence or absence of
switch costs in each target availability condition, we ran a three-way
repeated measures ANOVA with target availability, transition type and
display type as factors on saccade latency. However, neither the main
effect display type, nor any of the interactions that included that term
were significant (p> .12). The full ANOVA results can be found in the
supplementary material online.

3.2. Hierarchical drift diffusion modeling results

Of all models that we ran (see Table S2), the full model with a variable
drift rate for target availability and transition type and a variable
boundary separation for target availability performed best in explaining
the data, as indicated by the lowest DIC (�5.15� 105). The next best
model was the drift-rate-only model with a DIC of �5.13� 105. We
estimated the posterior probability distributions for the condition-
specific drift rates and boundary separations and tested for significance
directly on the posterior distributions (see Fig. 1E). Using the posterior
probabilities, we examined how likely it would be for parameter esti-
mates to be greater in one condition compared to another (P[X> Y]). For
drift rates, we compared switch to repeat trials in both target availability
conditions separately. Drift rates were significantly higher in repeat trials
than in switch trials for one-target blocks (switch: vmean¼ 2.31, repeat:
vmean¼ 3.70, P[switch> repeat]¼ 0%). In both-targets blocks drift rates
were also higher for repeat trials than for switch trials, but the difference
was not as large (switch: vmean¼ 3.88, repeat: vmean¼ 4.22, P
[switch> repeat]¼ 9%). This suggests that participants needed more
time to decide whenever selecting a different target than on the previous
trial, particularly when only one target was available. Nevertheless, the
higher likelihood for drift rates to be larger for repeat than switch trials
when both targets were present suggests that also in this condition, some
switch-related cost was present. Even though the best model included
Table 1
Percentage correctly fixated targets for all conditions in all three experiments
with within-subject 95% confidence intervals (Morey, 2008).

Target Availability Target Switch Target Repeat

Both-Targets 96.1 [95.4, 97.0] 96.9 [96.2, 97.6]
One-Target 87.2 [85.4, 89.0] 95.3 [94.6, 96.0]
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separate estimates for boundary separation for one-target blocks and
both-targets blocks, comparing these boundary separation estimates to
each other yielded virtually the same value (one-target available:
amean¼ 1.17, both-targets available: amean¼ 1.16, P[both-targets> one-
target]¼ 47%). This suggests that participants did not adjust their
response caution across target availability conditions. This finding is
somewhat unintuitive given that the best model included a separate
boundary separation parameter for each target availability condition, but
could be caused by the DIC being biased toward the more complex model
(see Wiecki et al., 2013). Finally, to confirm that the full model accu-
rately captured the data, we examined the quality of the model fit. In
addition, we also checked whether the simpler drift-rate-only model
(only drift rate could vary across experimental conditions) was also
representative of the data, we analyzed that model as well. For this
purpose, we generated data by sampling from the posterior distributions
of the parameters and compared the simulated data to the original data.
Importantly, key summary statistics, such as accuracy, mean, median,
quantiles (10, 30, 50, 70, 90) saccade latencies, were all recovered in the
simulated data, as indicated by all summary statistics lying within the
95% credible intervals. This indicates that both models provide a good fit
to the data and interpreting their parameters is warranted.

3.3. Neuroimaging results

3.3.1. General linear model
To determine whether the behavioral effects in terms of switch costs

are governed by separable cognitive control mechanisms, we used a
general linear model (GLM) to examine whether BOLD activity associ-
ated with updating a target representation depended on how many
unique targets were available in a search display. Before comparing
switch-related activity across target availability conditions, we first
contrasted switch trials with repeat trials, separately within the one-
target and the both-targets condition. When both targets were avail-
able, switches elicited widespread activations across cerebral cortex and
cerebellum, in a network reminiscent of the multiple-demand (MD)
network (see Fig. 2 and Table 2). Bilateral frontal activations include
dorsolateral prefrontal cortex (dlPFC), frontopolar cortex, dorsal pre-
motor cortex (PMd), inferior frontal junction (IFJ), anterior insula/
frontal operculum cortex (aINS), posterior cingulate gyrus (pCG), and
medial frontal cortex (spanning from the dorsal anterior cingulate cortex
to the frontal eye fields, mFC/dACC). Parietal activations were found
bilaterally in the superior parietal lobule (SPL), extending across the
intraparietal sulcus (IPS) into the inferior parietal lobule (IPL), including
supramarginal and angular gyrus. In the occipital and temporal lobe,
there was switch-related activity in the intracalcarine sulcus and in
temporo-occipital regions, bilaterally and in the right inferior temporal
gyrus. Finally, several subregions in the cerebellum were activated as
well. When only one target was available, fewer significant clusters were
found (see Fig. 3 and Table 2). Activations were restricted primarily to
posterior regions in the parietal and occipital lobe, including IPS, SPL,
and IPL as well as the cerebellum. However, two smaller activated re-
gions were also found in the left IFJ, and the dlPFC at the border with the
frontopolar cortex.

Next, to statistically compare switch-related activity between target
availability conditions, we directly compared activity associated with
each target availability condition to each other. However, because target
availability was manipulated at the block-level, when directly comparing
switch-related activity across target availability conditions, we might
pick up on overall block differences rather than true switch-related dif-
ferences. We therefore computed a double contrast, in which we first
isolated switch-related activity per target availability condition by sub-
tracting repeat activity from switch activity, and next, contrasted these
differences to obtain the neural correlate of switching when both targets
were available versus when one target was available. When considering
regions where switch-related activity was stronger in both-targets blocks
than in one-target blocks, we again found activations closely resembling



Fig. 2. Cerebral activations for the free choice condition (proactive control
demand). Activations shown in yellow-red represent the contrast free
switch> free repeat; activations shown in blue represent the contrast free
repeat> free switch. Group-level t-statistics maps were computed with the tfce-
method (S. M. Smith and Nichols, 2009) and corrected for multiple comparisons
using nonparametric permutation testing. The resulting P-value maps were
thresholded at α ¼ .05 and projected onto the fsaverage surface using regis-
tration fusion (Wu et al., 2018), with translucent coloring. In addition, regions
that were also significant at α ¼ .01 are shown in saturated colors. Free switches
were associated with higher activity than free repeats across both hemispheres
in dorsolateral prefrontal cortex (dlPFC), frontopolar cortex (FPC), dorsal pre-
motor cortex (PMd), inferior frontal junction (IFJ), anterior insula/frontal
operculum cortex (aINS), posterior cingulate gyrus (pCG), anterior cingulate
gyrus (aCG), medial frontal cortex (spanning from the dorsal anterior cingulate
cortex to the frontal eye fields, mFC/dACC), superior parietal lobule (SPL),
inferior parietal lobule (IPL), intracalcarine sulcus (ICS), right inferior temporal
gyrus (ITG), temporo-occipital cortex (TOC), and bilateral cerebellum (not
shown here). Free repeats were associated with higher activity than free repeats
in the left precuneus (pc), bilateral ventromedial prefrontal cortex (vmPFC), left
medial temporal gyrus (MTG), left temporoparietal junction (TPJ) and right
temporal pole (TP).

Table 2
Localization of activations for the main contrasts. Coordinates of local maxima
are reported in MNI152-space. Large clusters were split into subclusters based on
anatomical considerations. Structure labels are based on the Harvard-Oxford
anatomical atlas.

Structure t-
statistic

X Y Z

Proactive Switch> Proactive Repeat
Left Anterior Insula 8.26 �33 21 8
Right Anterior Insula 8.24 33 24 8
Left Precentral Gyrus/Inferior Frontal
Junctionc

8.25 �45 0 38

Right Precentral Gyrus/Inferior Frontal
Junctionc

6.95 52 8 25

Left Middle Frontal Gyrus/Dorsal Premotor
Cortexc

7.58 �27 �6 54

Right Middle Frontal Gyrus/Dorsal Premotor
Cortexc

8.41 27 12 47

Superior Frontal Gyrus/Medial Frontal Gyrusc 8.31 0 18 47
Posterior Cingulate Gyrus 7.69 0 �30 28
Left Intraparietal Sulcusb 9.35 �30 �54 44
Right Intraparietal Sulcusb 9.27 36 �45 41
Left Inferior Parietal Lobule 8.99 �30 �75 27
Right Superior Parietal Lobule 8.92 39 �63 61
Right Intracalcarine Sulcus 6.19 24 �72 8
Left Intracalcarine Sulcus 6.16 �18 �66 5
Left Cerebellum (Crus I)a 8.9 �33 �63 �32
Right Cerebellum (Crus I)a 8.75 36 �57 �32

Proactive Repeat> Proactive Switch
Medial Frontal Cortex 7.08 �3 57 �9
Left Orbitofrontal Cortex 6.62 �39 36 �15
Right Orbitofrontal Cortex 5.36 33 39 �15
Subcallosal Gyrus 5.88 0 15 �9
Medial Frontopolar Cortex 5.64 0 60 19
Right Temporal Pole 6.35 51 15 �32
Left Middle Temporal Gyrus 5.99 �60 0 �25
Left Inferior Parietal Lobule/Temporoparietal
Junctionc

6.18 �45 �57 24

Precuneus 6.13 �6 �54 21
Reactive Switch>Reactive Repeat
Left Lateral Frontopolar Cortex 5.28 �42 39 11
Left Precentral Gyrus/Inferior Frontal
Junctionc

5.04 �42 0 34

Left Intraparietal Sulcusb 6.76 �30 �51 44
Right Intraparietal Sulcusb 6.21 36 �45 41
Left Fusiform Gyrus 5.55 �33 �54 �19
Cerebellum (Vermis VI)a 5.74 6 �72 �25
Right Cerebellum (Crus I)a 5.67 33 �54 �35
Left Cerebellum (Crus I)a 5.16 �39 �51 �35

Reactive Repeat>Reactive Switch
Medial Frontal Cortex 7.69 0 45 �12
Medial Frontopolar Cortex 6.07 �4 58 4
Left Temporal Pole 5.61 �48 9 �35
Right Amygdala 4.53 15 �9 �15
Left Amygdala 3.98 �15 �7 �16
Left Hippocampus 6.51 �24 �21 �15
Right Hippocampus 4.42 24 �24 �12
Left Precuneus 6.29 �15 �48 34
Left Inferior Parietal Lobule/Temporoparietal
Junctionc

5.88 �57 �69 31

Proactive Switch Cost>Reactive Switch Cost
Right Lateral Frontopolar Cortex 7.59 48 42 24
Left Lateral Frontopolar Cortex 6.5 �36 63 18
Right Middle Frontal Gyrus/Dorsal Premotor
Cortexc

7.47 24 15 47

Right Middle Frontal Gyrus 6.04 51 30 38
Superior Frontal Gyrus/Medial Frontal Gyrusc 6.11 3 21 51
Posterior Cingulate Gyrus 5.27 0 �33 28
Right Superior Parietal Lobule 7.59 42 �60 61
Right Intraparietal Sulcusb 5.61 33 �51 40
Left Intraparietal Sulcusb 5.08 �30 �57 50
Left Cerebellum (Crus I)a 6.65 �36 �63 �32
Right Cerebellum (Crus I)a 5.08 36 �57 �32

a These structure labels were retrieved from the Probabilistic cerebellar atlas
(included in FSL).

b These structure labels were retrieved from the Juelich Histological Atlas.
c Additional labels were provided to further specify anatomical location or
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the MD network, including bilateral dlPFC, frontopolar cortex, mFC/
dACC, pCG, SPL, IPS, and Cerebellum (Fig. 4). The opposite contrast
–more switch-related activity in the one-target condition than in both-
targets available condition– yielded no significant activations. One pos-
sibility might be that in the one-target condition, target representations
often needed to be updated both on switch and repeat trials, for example
if participants did not anticipate any of the targets. If this is the case,
switch and repeat trials would be more similar in the one-target available
condition, so that activity reflecting switch costs would be reduced.

To investigate this possibility, we directly compared switch activa-
tions between target availability conditions without taking repeat events
into account (see Fig. S2). For the contrast both-targets switch greater
than one-target switch, a very similar pattern was found as in the double-
contrast analysis (only bilateral aINS and Caudate were additionally
active), thus confirming the previous findings and suggesting that block
differences do not seem to play an important role. More importantly,
when considering the opposite contrast, significant clusters of activation
were now found in the left ventrolateral prefrontal cortex (vlPFC), pre-
cuneus, and left temporoparietal junction, regions that have been
considered part of the default mode network (DMN; Raichle, 2015;
Raichle et al., 2001). The DMN has recently been linked to automated
behavior, not rigorously governed by cognitive control (Vatansever et al.,
2017). Therefore, stronger DMN activations in one-target blocks could be
explained by less control being applied during switches in this condition
compared to both-targets blocks. If so, the same should be true for repeat
trials. For this reason, these DMN activations might not have emerged in
the double-contrast procedure, as these activations canceled each other
out when switch and repeat trials in the one-target condition were con-
trasted with each other. To investigate whether there actually was DMN
activity associated with repeat trials, in an exploratory analysis, we
examined whether there were regions in which repeat events led to
functional significance.
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Fig. 3. Cerebral activations for the imposed choice condition (reactive control
demand). Activations shown in yellow-red represent the contrast imposed
switch> imposed repeat; activations shown in blue represent the contrast
imposed repeat> imposed switch. Group-level t-statistics maps were computed
with the tfce-method (S. M. Smith and Nichols, 2009) and corrected for multiple
comparisons using nonparametric permutation testing. The resulting P-value
maps were thresholded at α ¼ .05 and projected onto the fsaverage surface using
registration fusion (Wu et al., 2018), with translucent coloring. In addition,
regions that were also significant at α ¼ .01 are shown in saturated colors.
Imposed switches were associated with higher activity than imposed repeats
bilaterally in dorsolateral prefrontal cortex (dlPFC), left inferior frontal junction
(IFJ), superior parietal lobule (SPL), inferior parietal lobule (IPL),
temporo-occipital cortex (TOC), and bilateral cerebellum (not shown here).
Imposed repeats were associated with higher activity than imposed repeats in
the left precuneus (pc), bilateral ventromedial (vmPFC), dorsomedial prefrontal
cortex (dmPFC), left medial temporal gyrus (MTG), and left hippocampus (HC).

Fig. 4. Cerebral regions in which free switch cost (free switch> free repeat)
yielded stronger activity than imposed switch cost (imposed switch> imposed
repeat), shown in yellow-red. Group-level t-statistics maps were computed with
the tfce-method (S. M. Smith and Nichols, 2009) and corrected for multiple
comparisons using nonparametric permutation testing. The resulting P-value
maps were thresholded at α ¼ .05 and projected onto the fsaverage surface using
registration fusion (Wu et al., 2018), with translucent coloring. In addition,
regions that were also significant at α ¼ .01 are shown in saturated colors. Free
switch costs were associated with higher activity than imposed switch cost
across both hemispheres in dorsolateral prefrontal cortex (dlPFC), frontopolar
cortex (FPC), dorsal premotor cortex (PMd), inferior frontal junction (IFJ),
anterior insula/frontal operculum cortex (aINS), bilateral posterior cingulate
gyrus (pCG), anterior cingulate gyrus (aCG), medial frontal cortex (mFC/dACC),
superior parietal lobule (SPL), intaparietal sulcus (IPS), intracalcarine sulcus
(ICS), right inferior temporal gyrus (ITG), temporo-occipital cortex (TOC), and
bilateral Cerebellum (not shown here).
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stronger activation than switch events, separately for the both-targets
and one-target conditions.

In this exploratory analysis, we effectively reversed the contrast that
was used to isolate switch-related activity in the first step of the double
contrast procedure. We indeed detected strong activity along the medial
wall of the PFC, the orbitofrontal cortex (OFC), the precuneus, the left
medial temporal gyrus (MTG), and the temporoparietal junction (TPJ)
across both target availability conditions (opposite contrast shown in
blue in Figs. 2 and 3). In addition to these common activations, the
amygdala and the hippocampus were selectively active in the one-target
blocks (Fig. 3). Directly comparing both-targets to one-target repeat trials
(not taking switch trials into account), yielded three cluster in which
there was stronger activity in the one-target condition. These clusters
were located in the precuneus, the medial PFC, MTG, and the TPJ
(Fig. S3). The opposite contrast did not show any significant activations,
suggesting that the DMN was activated more strongly when one target
was available than when both targets were available, which could indi-
cate a higher demand for cognitive control during both-targets blocks
than during one-target blocks (see Discussion), or conversely, more
automated behavior during the latter. To test this hypothesis, finally, we
compared activity between target availability conditions across all event
types (collapsed across transition type). This analysis indicates primarily
DMN activity (precuneus, vlPFC, TPJ, and medial PFC) in one-target
blocks and MD network activity (bilateral dlPFC, aINS, PMd, IFJ, fron-
topolar cortex, mFC/dACC, SPL) in both-targets blocks (Fig. S4), in line
with the hypothesis that more control is demanded during both-targets
blocks.

Taken together, the GLM findings demonstrate that for both-targets as
well as one-target switches, activations were found in what is known as
the multiple-demand network. However, these activations were stronger
and more widespread for free switches than for imposed switches.
Furthermore, during repeat trials, the DMN was strongly active, partic-
ularly during one-target blocks. Irrespective of transition type (switch
versus repeat), the MD network seems to be more engaged when both
targets are available than when only one is there, in which case the DMN
is predominantly active.

3.3.2. Deconvolution analysis
The standard approach of modeling the BOLD response with a ca-

nonical hemodynamic response function (HRF) maximizes sensitivity for
activations at the expense of being more biased towards a predefined
shape of the response (Poldrack et al., 2011). To characterize potential
interregional variability and accommodate non-standard BOLD-res-
ponses not captured by the double-gamma function that we used in the
GLM approach, we employed a deconvolution analysis. Deconvolution
has the advantage that the shape and the time course of the HRF can vary
and some temporal information can be retained. We limited this analysis
to ROIs that are part of the MD network and showed switch-related ac-
tivity (collapsed across target availability) in the GLM (see section 2.8.2),
to limit the number of analyses, while still considering most regions in
which switch-related activity might be found. Across both cerebral cortex
and cerebellum, 23 ROIs were considered. We focused on activation
differences between imposed and free switches, specifically where the
activation patterns diverge from the standard GLM results described
above. Such differences were found primarily for imposed switches.
Specifically, the deconvolution identified significant activity bilaterally
in the anterior Insula (aINS) and the left dorsal premotor cortex (PMd)
located on the superior frontal gyrus. Nevertheless, in these regions, free
switches still elicited a stronger response than imposed switches (see
Fig. 5). Across all other ROIs, we observed four patterns: regions with
neither imposed nor free switch activity, regions with only free switch
activity, regions with both imposed and free switch activity but more
activity on free switches, and regions with equal amounts of imposed and
free switch activity. However, in all those regions the deconvolution
yielded the same qualitative pattern as the standard GLM approach.

Note that beyond regional differences between imposed and free



Fig. 5. Group-averaged beta estimates of neural
activation time course in selected regions of in-
terest. Deconvolution analysis was used to model
the BOLD response for each event type sepa-
rately. For each target availability condition, the
difference of the time courses for switch and
repeat trials was computed and the resulting time
courses are shown here. The shaded color bands
represent 68% confidence intervals (�1 SEM).
Thick lines as well as horizontal bars indicate
significant clusters (at α ¼ .05) as produced by
cluster-based permutation testing (5000 permu-
tations). The black horizontal bars indicate the
range over which the difference between the
target availability condition was significant. The
marked time points (vertical dashed lines) indi-
cate the latency of 50% maximum amplitude as
estimated using a jackknife approach, as a mea-
sure of the onset of activation (Miller et al., 1998;
Luck, 2014; Liesefeld, 2018).
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switches, these two conditions could also differ in temporal aspects. In
fact, a strong prediction of the dual mode of control framework is that
proactive control should begin before trial onset, whereas reactive con-
trol should only be invoked after the search display onset. van Driel et al.
(2019) provided strong support for this prediction using a very similar
paradigm to ours in combination withmore time-sensitive EEGmeasures.
To test for potential onset differences also in the fMRI signal, we
measured the estimated onset latency in combination with a jackknife
approach. The results yielded significantly earlier proactive switch ac-
tivity in the left PMd (Mproactive¼ 1210m s, Mreactive¼ 2237m s,
tc(18)¼ 2.77, pc¼ .01), right PMd (Mproactive¼ 1484m s, Mreac-

tive¼ 2300m s, tc(18)¼ 2.53, pc¼ .02), left IFJ (Mproactive¼ 1484m s,
Mreactive¼ 2226m s, tc(18)¼ 2.79, pc¼ .01), right IFJ (Mproac-

tive¼ 1505m s, Mreactive¼ 2000m s, tc(18)¼ 2.99, pc¼ .008), left poste-
rior parietal cortex (Mproactive¼ 1721m s, Mreactive¼ 2405m s,
tc(18)¼ 2.22, pc¼ .04), right posterior parietal cortex (Mproac-

tive¼ 1747m s, Mreactive¼ 2516m s, tc(18)¼ 3.33, pc¼ .004), and
mFC/dACC (Mproactive¼ 1284m s, Mreactive¼ 2026m s, tc(18)¼ 2.79,
pc¼ .01), but no such difference in the bilateral aINS (left: Mproac-

tive¼ 2152m s, Mreactive¼ 2115m s, tc(18)¼ 0.41, pc¼ .69; right:
Mproactive¼ 1900m s, Mreactive¼ 2410m s, tc(18)¼ 1.50, pc¼ .15). Some
of these areas, notably mFC/dACC and PMd, are consistent with the
midfrontal topography of the free choice related beta-oscillatory sup-
pression that was observed by van Driel et al. (2019). Note that onemight
also expect to find onset differences in the frontopolar cortex, given its
presumed role in voluntary switching (Mansouri et al., 2017; Pollmann,
2016). However, as there was virtually no activity related to imposed
switches in this region, onset difference could not meaningfully be
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determined.

4. Discussion

In this study we set out to examine which brain regions are recruited
in multiple-target search, depending on whether observers are free to
select a target or whether they are forced to select a particular target. For
this purpose, we asked observers to look for multiple targets and we
manipulated whether both or only one of the two potential target colors
were present in a search display. We reasoned that the presence of both
targets would enable observers to use proactive control to prepare a
search, whereas the presence of only a single item would require reactive
control whenever the observer expected the wrong target. In accordance
with previous findings (Ort et al., 2017, 2018), we found clear switch
costs in terms of both saccade latency and saccade accuracy when only
one target category was present in a search display, while there were no
switch costs when both targets were available. This finding is further
supported by the results of hierarchical drift diffusion modeling, which
revealed lower drift rates on switch compared to repeat trials when one
target was available. When both targets were present, drift rates were
also lower for switch than for repeat trials, but this difference was much
smaller than in the one-target condition. This suggests that observers
used the predictability of the both-targets condition to prepare selection
of either one of the targets, so that potential costs associated with
updating the currently active target representations remained latent.

Importantly, using fMRI measures we provide new evidence
regarding the neural mechanisms underlying these switches of feature-
based attention. We found the frontoparietal multiple-demand network
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(Duncan, 2010; Fedorenko et al., 2013) to be strongly associated with
free target switches. Imposed target switches elicited a similar, yet
weaker activity pattern in the posterior parietal cortex (PPC), and rela-
tively smaller activity clusters in frontal regions at the inferior frontal
junction (IFJ) and dorsolateral prefrontal cortex (dlPFC). Furthermore,
the direct comparison of free and imposed switches indicates that the
multiple-demand network is more strongly involved during free than
during imposed switches. In contrast, parts of the default mode network
are activated stronger in blocks involving imposed switches. Assuming
that target availability conditions primarily differed with respect to
whether observers used proactive control (both-targets available) or
reactive control (one-target available), our findings suggest that these
two modes of control can indeed be dissociated during multiple-target
search. More specifically, by means of a deconvolution analysis, we
were able to categorize these differential activations into regions that
exclusively activate for free switches (dlPFC, frontopolar cortex, and
medial frontal cortex/mFC) and regions that are also active during
imposed switches but to a lesser extent (IFJ, dorsal premotor cor-
tex/PMd, and PPC). Furthermore, these regions activated earlier for free
switches, corroborating their role in preparatory cognitive control in
anticipation of a demanding event.

The observed activations for imposed switches are reminiscent of
earlier reports on stimulus or task-induced feature-based attention shifts
with activations primarily located bilaterally in PPC and PMd (Greenberg
et al., 2010; Liu et al., 2003; Pollmann et al., 2006, 2000, Slagter et al.,
2006, 2007). This also matches the observation that IFJ and PPC are
involved in updating and representing task sets across a variety of tasks
(Brass and von Cramon, 2004; Kim et al., 2012). In particular, it has been
suggested that while IFJ is responsible for updating task-specific infor-
mation, the PPC maintains such information and implements task sets
(Brass and von Cramon, 2004; Bunge et al., 2003; Greenberg et al., 2010;
Shulman, 2002; Slagter et al., 2007). Finally, the activity in the anterior
insula that we observed after deconvolution analyses of both types of
switches may be part of a network that signals salient events (such as the
absence of an expected target color) and the need to initiate a cascade of
control signals that eventually update the active target representation
(Menon and Uddin, 2010; Power and Petersen, 2013; Seeley et al., 2007).
We isolated the neural response to feature-based attention shifts from the
additional types of changes that may contribute to task-switch costs (e.g.
Meiran, 2010), in particular shifts of stimulus-response mapping. Our
findings suggest that establishing a new attentional set is a rather “cheap”
process that requires only minimal frontal activity (see Ort et al., 2019;
Moore and Weissman, 2010 for behavioral and electrophysiological ev-
idence). Furthermore, similar to Gmeindl et al. (2016), we directly
compared endogenous, self-initiated target switches to imposed
switches, but of feature-based rather than spatial attention. Importantly,
our design allowed us to link either switch-related activity to specific
events in the experiment. In doing so, we show that there is common, but
also distinct neural activity underlying these types of switches.

However, some findings were unexpected, in particular with respect
to imposed switches. First, with the standard GLM approach, we did not
observe any significant imposed-switch-related activity in the dorsal
premotor cortex (PMd; presumably the location of the human frontal eye
fields), an area that has previously been shown to be related specifically
to feature-based attention shifts (Kim et al., 2012). Using deconvolution,
we were able to detect significant, but relatively weak activity in the left
PMd. A possible explanation may be that in contrast to earlier studies of
feature-based attention shifts (e.g. reviewed in Kim et al., 2012), in our
study, there were no changes in the stimulus-response mapping associ-
ated with imposed switches. Note that an imposed target shift did not
systematically signal a particular eye movement as target location and
target identity were unrelated. Therefore, there was no need to activate
or update a certain stimulus-response mapping, which has been sug-
gested to be a function of the PMd (e.g. Badre and D’Esposito, 2009;
Hopfinger et al., 2000; Kim et al., 2012). This is also supported by Poll-
mann et al. (2006), who, during a visual search task, separated attention
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shifts from response shifts and found only the latter to activate the PMd.
Second, unlike Jiang et al. (2018), we did not observe any activity in

the anterior cingulate cortex (ACC) related to imposed switches. This
region has been linked to conflict monitoring in numerous studies (e.g.
Botvinick et al., 1999; Ito et al., 2003; Jiang et al., 2015; Kerns et al.,
2004; Ullsperger et al., 2014). As observers could not anticipate imposed
target switches, we also expected a degree of surprise whenever the
target changed. This signal has been suggested to be related to
conflict-processing and to originate in the medial frontal cortex (e.g.
Cavanagh and Frank, 2014). However, experienced conflict in Jiang et al.
(2018) may have been stronger due to the fact that participants were
explicitly cued as to which task to expect, while in our study any build-up
of expectations was left to the observer. Furthermore, unlike in the Jiang
et al. study, observers did not have to manage a target-specific stim-
ulus-response mapping in our study. Overall, we believe that target se-
lection in our paradigm was relatively easy and therefore did not evoke
strong conflict-related signals in the frontal cortex. That said, in a recent
EEG study with a very similar paradigm (van Driel et al., 2019), we did
observe a power enhancement in the delta/theta-frequency band after
imposed switches over midfrontal electrodes. This signal has been sug-
gested to be related to conflict-processing and to originate in the medial
frontal cortex (e.g. Cavanagh and Frank, 2014). It remains to be inves-
tigated why we found no corresponding source here.

Some support for the hypothesis that relatively little control was
exerted in the imposed target condition comes from the default mode
network activity that we observed, particularly for repeat trials. The
default mode networkhas recently been shown to not just reflect an idle
brain state, but to also activate during various tasks (Elton and Gao,
2015; Konishi et al., 2015; Smallwood et al., 2013; V. Smith et al., 2018;
Spreng, 2012; Spreng et al., 2014; Vatansever et al., 2017). Even though
its functional significance is still debated, there is increasing evidence
that suggests the default mode network is related to internally-generated
thought (Konishi et al., 2015), decoupled from immediate sensory input
or context-representation (V. Smith et al., 2018). Maybe most impor-
tantly, Vatansever et al. (2017) demonstrated that even though the
cognitive control network is strongly involved in acquiring task rules,
once those rules have been learned, the default mode network becomes
active while applying them. They concluded that whenever the current
task context is predictable, individuals enter a form of “autopilot” mode
in which correct responses can be made without explicit cognitive con-
trol. We argue the same may happen in our paradigm: During phases of
target repeats, participants were able to select the correct target disk in a
low-control, automated manner.

The activation patterns associated with free switches are similar to
previously reported activations related to proactive control demand
(Irlbacher et al., 2014; Jiang et al., 2018). In addition to parietal and
posterior frontal activity as was also observed for imposed switches, two
key activations are of primary importance here. First, there were strong
medial activations spanning from dorsal anterior cingulate cortex (dACC)
to the supplementary motor area (SMA). Activity in these regions has
been associated with self-generated choice (Demanet et al., 2013; For-
stmann et al., 2006; Gmeindl et al., 2016; Orr and Banich, 2013; Pas-
singham et al., 2010; Soon et al., 2008; Taylor et al., 2008; Wisniewski
et al., 2016; Wisniewski et al., 2015; J. Zhang et al., 2013). The present
pattern of activations matches those findings, consistent with the idea
that participants used the available information to prepare a switch trial
in advance. Second, activity was found in the lateral frontopolar cortex.
This region has been associated with making free decisions, but also with
the evaluation of alternative goals in the context of exploratory behavior
(Mansouri et al., 2017; Pollmann, 2016). We believe that this activity
might reflect participants evaluating whether or not to switch to the
other target color during a streak of target repeats. Nevertheless, even
though these activations were specific to the free choice condition, they
may only indirectly relate to proactive control, inasmuch as this infor-
mation can be used by a cognitive control system to signal when (and
supposedly how much) proactive control should be invoked.
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In addition, we also found activity along the dlPFC. In line with an
interpretation in terms of proactive control, this activity might reflect
preparatory updating and maintaining of task rules (Braver et al., 2009).
However, as the dlPFC has been linked to a wide range of executive
functions, such as working memory, planning, and inhibition (e.g.
Niendam et al., 2012), we cannot exclude that other factors caused the
activations in this region. For example, dlPFC activity could have been
caused by additional mental effort and working memory demand asso-
ciated with overall planning or keeping track of the switches, in order to
adhere to the task instructions (e.g. Braver et al., 1997; Bunge et al.,
2001; Dosenbach et al., 2008; Rypma and D’Esposito, 1999; Shenhav
et al., 2013). Nevertheless, it could be argued such additional cognitive
processes, despite not being cognitive control in a strict sentence, are
essential for proactive control. In this sense, proactive control requires
the maintenance of the current and the targeted state (working memory),
planning target selection on future trials (planning) and making the de-
cision to invoke proactive control at a given moment (intention).
Therefore, the actual usage of proactive control can be seen as a conse-
quence of an cascade of other cognitive processes.

Beyond that, the present findings provide further support for
multiple-state models of working memory postulating that the number of
memory items that can concurrently affect behavior at any givenmoment
is limited (Huang and Pashler, 2007; Oberauer, 2002; Olivers et al.,
2011). The fact that we observed switch costs indicates that observers did
not distribute resources equally across multiple target representations.
This interpretation is supported by the fMRI results which show
switch-related activity in both target availability conditions in regions
that have previously been associated with updating of attentional sets
(Greenberg et al., 2010; Liu et al., 2003; Pollmann et al., 2006, 2000;
Slagter et al., 2006, 2007; Wager et al., 2004), including bilateral pos-
terior parietal cortex and inferior frontal junction. Switch-related activity
in these regions suggests that in both target availability conditions switch
trials were associated with priority shifts, therefore supporting dynamic
weighing of attentional relevance between target representation (see also
van Driel et al., 2019).

5. Conclusion

We investigated the contributions of proactive and reactive control to
target selection during multiple-target search. We found that both control
mechanisms activate a similar network that has previously been associ-
ated with shifts of feature-based attention, with proactive control elicit-
ing greater activity generally. In addition, proactive switching also
activated other frontal regions that have been linked to free choice and
evaluating alternative options other than the current action. We argue
that these signals represent control processes to update target represen-
tations. The current study elucidates the behavioral and neural profiles of
different target switching control strategies.
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